# Nonlinear Finite Element Methods Material nonlinearities 

Vinh Phu Nguyen

## Sources of nonlinearities

Geometrical nonlinearities
large displacement/rotation (structural instability)
finite deformation: large strain (metal forming)
Material nonlinearities
plasticity
cohesive zone models
damage
visco-plasticity

## Boundary nonlinearities

contact problems

## Sources of nonlinearities

Geometrical nonlinearities
large displacement/rotation (structural instability)
finite deformation: large strain (metal forming)
Material nonlinearities
plasticity
cohesive zone models
damage
visco-plasticity
Boundary nonlinearities
contact problems

$$
\boldsymbol{\sigma}=f(\boldsymbol{\epsilon}, \boldsymbol{\alpha})
$$

## References

Nonlinear finite elements for continua and structures, T . Belytschko,W.K. Liu and B. Moran,Wiley, 2000.

Nonlinear finite element methods, P. Wriggers, Springer, 2008.

Non-linear finite element analysis of solids and structures, R. de Borst, M.A. Crisfield, J.J.C. Remmers, C.V. Verhoosel,Wiley, 2012.

Nonlinear continuum mechanics for finite element analysis, J. Bonet and R.D.Wood, Cambridge, I997.

## Material models

Thermodynamics+experiments

Rate independent
(Time independent)

Elastic

Elasto-plastic
Elasto-damage
strain rate Viscoelastic
Viscoplastic
Visco-elasto-damage
Plastic-damage
Rate dependent
(Time dependent)

## Equilibrium equation

$$
\int_{\Omega} \delta \boldsymbol{\epsilon}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{u}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
$$

Linear problems

$$
\begin{aligned}
& \int_{\Omega} \delta \epsilon^{\mathrm{T}} \mathbf{D}^{e} \boldsymbol{\epsilon} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
& \int_{\Omega} \delta \mathbf{a}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B a d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \Gamma_{t} \\
& \left(\int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B} \mathrm{~d} \Omega\right) \mathbf{a}=\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
\end{aligned}
$$

## Equilibrium equation

$$
\int_{\Omega} \delta \boldsymbol{\epsilon}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{u}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
$$

Linear problems
Nonlinear problems

$$
\begin{aligned}
& \int_{\Omega} \delta \epsilon^{\mathrm{T}} \mathbf{D}^{e} \boldsymbol{\epsilon} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
& \int_{\Omega} \delta \mathbf{a}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B a d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \Gamma_{t} \\
& \left(\int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B} \mathrm{~d} \Omega\right) \mathbf{a}=\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
\end{aligned}
$$

## Equilibrium equation

$$
\int_{\Omega} \delta \boldsymbol{\epsilon}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{u}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
$$

Linear problems
Nonlinear problems

$$
\begin{aligned}
& \int_{\Omega} \delta \boldsymbol{\epsilon}^{\mathrm{T}} \mathbf{D}^{e} \boldsymbol{\epsilon} \mathrm{~d} \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
& \int_{\Omega} \delta \mathbf{a}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B} \mathbf{a} d \Omega=\int_{\Gamma_{t}} \delta \mathbf{a}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
& \left.\int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{e} \mathbf{B} \mathrm{~d} \Omega\right) \mathbf{a}=\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \quad \int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}(\mathbf{a}) \mathrm{d} \Omega=\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t}
\end{aligned}
$$

## Equilibrium equation

Discrete equilibrium equation

$$
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{f}_{\mathrm{ext}}
$$

with

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{ext}} & =\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
\boldsymbol{\epsilon} & =\mathbf{B a} \\
\boldsymbol{\sigma} & =f(\boldsymbol{\epsilon}, \alpha)
\end{aligned}
$$

equilibrium path/curve

history variables
Argyris (1964)

## Equilibrium equation

Discrete equilibrium equation

$$
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{f}_{\mathrm{ext}}
$$

with

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{ext}} & =\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
\boldsymbol{\epsilon} & =\mathbf{B a} \\
\boldsymbol{\sigma} & =f(\boldsymbol{\epsilon}, \alpha)
\end{aligned}
$$

equilibrium path/curve

history variables
Argyris (1964)

## Equilibrium equation

Discrete equilibrium equation

$$
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{f}_{\mathrm{ext}}
$$

with

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{ext}} & =\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{\Gamma} \Gamma_{t} \\
\boldsymbol{\epsilon} & =\mathbf{B a} \\
\boldsymbol{\sigma} & =f(\boldsymbol{\epsilon}, \alpha)
\end{aligned}
$$

equilibrium path/curve

history variables
Argyris (1964)

## Equilibrium equation

Discrete equilibrium equation

$$
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{f}_{\mathrm{ext}}
$$

with

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{ext}} & =\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
\boldsymbol{\epsilon} & =\mathbf{B a} \\
\boldsymbol{\sigma} & =f(\boldsymbol{\epsilon}, \alpha)
\end{aligned}
$$

## Incremental

history variables
Argyris (1964)

## Equilibrium equation

Discrete equilibrium equation

$$
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{f}_{\mathrm{ext}}
$$

with

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{ext}} & =\int_{\Gamma_{t}} \mathbf{N}^{\mathrm{T}} \overline{\mathbf{t}} \mathrm{~d} \Gamma_{t} \\
\boldsymbol{\epsilon} & =\mathbf{B a} \\
\boldsymbol{\sigma} & =f(\boldsymbol{\epsilon}, \alpha)
\end{aligned}
$$

history variables
equilibrium path/curve


Incremental iterative

## Newton-Raphson methods

 Full NR scheme

$$
\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}_{2}\right)-\mathbf{f}_{\mathrm{ext}}^{2}=\mathbf{0}
$$

Linearization around $\mathbf{a}_{1}$
$\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)-\mathbf{f}_{\text {ext }}^{2}+\left.\frac{\partial \mathbf{f}_{\text {int }}^{n}}{\partial \mathbf{a}}\right|_{\mathbf{a}_{1}} \delta \mathbf{a}=\mathbf{0}$

$$
\mathbf{K}\left(\mathbf{a}_{1}\right) \delta \mathbf{a}_{1}=\mathbf{f}_{\text {ext }}^{n}-\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)
$$

$$
\mathbf{a}_{1} \leftarrow \delta \mathbf{a}_{1}
$$

Tangent stiffness matrix

$$
\mathbf{K}_{7}=\frac{\partial \mathbf{f}_{\mathrm{int}}}{\partial \mathbf{a}}
$$

## Newton-Raphson methods

 Full NR scheme

$$
\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}_{2}\right)-\mathbf{f}_{\mathrm{ext}}^{2}=\mathbf{0}
$$

## Linearization around $\mathbf{a}_{1}$

$\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)-\mathbf{f}_{\text {ext }}^{2}+\left.\frac{\partial \mathbf{f}_{\text {int }}^{n}}{\partial \mathbf{a}}\right|_{\mathbf{a}_{1}} \delta \mathbf{a}=\mathbf{0}$

$$
\mathbf{K}\left(\mathbf{a}_{1}\right) \delta \mathbf{a}_{1}=\mathbf{f}_{\mathrm{ext}}^{n}-\mathbf{f}_{\mathrm{int}}^{n}\left(\mathbf{a}_{1}\right)
$$

$$
\mathbf{a}_{1} \leftarrow \delta \mathbf{a}_{1}
$$

Tangent stiffness matrix

$$
\mathbf{K}_{7}=\frac{\partial \mathbf{f}_{\mathrm{int}}}{\partial \mathbf{a}}
$$

## Newton-Raphson methods

 Full NR scheme

$$
\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}_{2}\right)-\mathbf{f}_{\mathrm{ext}}^{2}=\mathbf{0}
$$

## Linearization around $\mathbf{a}_{1}$

$$
\mathbf{f}_{\mathrm{int}}^{n}\left(\mathbf{a}_{1}\right)-\mathbf{f}_{\mathrm{ext}}^{2}+\left.\frac{\partial \mathbf{f}_{\mathrm{int}}^{n}}{\partial \mathbf{a}}\right|_{\mathbf{a}_{1}} \delta \mathbf{a}=\mathbf{0}
$$

$$
\mathbf{K}\left(\mathbf{a}_{1}\right) \delta \mathbf{a}_{1}=\mathbf{f}_{\text {ext }}^{n}-\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)
$$

$$
\mathbf{a}_{1} \leftarrow \delta \mathbf{a}_{1} \quad \mathbf{\Gamma}
$$

Tangent stiffness matrix

$$
\mathbf{K}_{7}=\frac{\partial \mathbf{f}_{\text {int }}}{\partial \mathbf{a}}
$$

## Newton-Raphson methods

 Full NR scheme$$
\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}_{2}\right)-\mathbf{f}_{\mathrm{ext}}^{2}=\mathbf{0}
$$

## Linearization around $\mathbf{a}_{1}$

$\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)-\mathbf{f}_{\text {ext }}^{2}+\left.\frac{\partial \mathbf{f}_{\text {int }}^{n}}{\partial \mathbf{a}}\right|_{\mathbf{a}_{1}} \delta \mathbf{a}=\mathbf{0}$

$$
\mathbf{K}\left(\mathbf{a}_{1}\right) \delta \mathbf{a}_{1}=\mathbf{f}_{\text {ext }}^{n}-\mathbf{f}_{\text {int }}^{n}\left(\mathbf{a}_{1}\right)
$$

$$
\mathbf{a}_{1} \leftarrow \delta \mathbf{a}_{1} \quad \mathbf{\Gamma}
$$

Tangent stiffness matrix
$\mathbf{K}_{7}=\frac{\partial \mathbf{f}_{\text {int }}}{\partial \mathbf{a}}$
residual/out of balance vector

## Tangent stiffness matrix

$$
\begin{aligned}
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{~d} \Omega \\
\mathbf{f}_{\mathrm{int}}(\mathbf{a}) & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}[\boldsymbol{\epsilon}(\mathbf{a})] \mathrm{d} \Omega \\
\mathbf{K} & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \frac{\partial \boldsymbol{\sigma}[\boldsymbol{\epsilon}(\mathbf{a})]}{\partial \mathbf{a}} \mathrm{d} \Omega \\
\mathbf{K} & =\int_{\Omega} \mathbf{B}^{\mathrm{T}} \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\epsilon}} \mathbf{B} \mathrm{~d} \Omega
\end{aligned}
$$

$$
\mathbf{K}=\frac{\partial \mathbf{f}_{\mathrm{int}}^{n}}{\partial \mathbf{a}}
$$

$$
\mathrm{d} \boldsymbol{\sigma}=\mathbf{C d} \boldsymbol{\epsilon}
$$

$$
\mathbf{K}=\int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{C B} \mathrm{~d} \Omega
$$

## Flowchart

$$
\begin{aligned}
\mathbf{a}_{0} & =\mathbf{a}_{0}^{n} \\
\mathbf{a} & =\mathbf{a}_{0}
\end{aligned}
$$

$\mathbf{K}, \mathbf{f}_{\text {int }}$
loop on elements loop on GPs

$$
\boldsymbol{\sigma}, \mathbf{C}=\phi(\boldsymbol{\epsilon}, \alpha)
$$



## Flowchart

$$
\begin{aligned}
\mathbf{a}_{0} & =\mathbf{a}_{0}^{n} \\
\mathbf{a} & =\mathbf{a}_{0}
\end{aligned}
$$

$\mathbf{K}, \mathbf{f}_{\text {int }}$
loop on elements loop on GPs

$$
\boldsymbol{\sigma}, \mathbf{C}=\phi(\boldsymbol{\epsilon}, \alpha)
$$

(XFEM: cracks)
go from step $n$ to step $n+1$

$$
\mathbf{a}_{0}^{n+1}=\mathbf{a}
$$

commit history vars

## At integration level

For one Gauss point, do
I. compute displacement a
2. compute strains $\boldsymbol{\varepsilon}$, get history $\alpha$
3. compute stresses/material tangent
4. compute internal force vector
5. compute tangent stiffness
$\mathbf{a}=\mathbf{N a}{ }_{e}$
$\boldsymbol{\epsilon}=\mathbf{B a}$
$\boldsymbol{\sigma}=f(\boldsymbol{\epsilon}, \alpha) \quad \mathbf{C}$
$\mathbf{f}_{\mathrm{int}}=\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d} \Omega$
$\mathbf{K} \leftarrow \int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{C B} \mathrm{d} \Omega$

## At integration level

For one Gauss point, do
I. compute displacement a
2. compute strains $\boldsymbol{\varepsilon}$, get history $\alpha$
3. compute stresses/material tangent
4. compute internal force vector
5. compute tangent stiffness
$\mathbf{a}=\mathbf{N a}{ }_{e}$
$\boldsymbol{\epsilon}=\mathbf{B a}$
$\boldsymbol{\sigma}=f(\boldsymbol{\epsilon}, \alpha) \quad \mathbf{C}$
$\mathbf{f}_{\text {int }}=\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d} \Omega$
$\mathbf{K} \leftarrow \int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{C B} \mathrm{d} \Omega$

## At integration level

For one Gauss point, do
I. compute displacement a
2. compute strains $\boldsymbol{\varepsilon}$, get history $\alpha$
3. compute stresses/material tangent 4. compute internal force vector
5. compute tangent stiffness
$\mathbf{a}=\mathrm{Na}_{e}$
$\boldsymbol{\epsilon}=\mathbf{B a}$
$\boldsymbol{\sigma}=f(\boldsymbol{\epsilon}, \alpha) \quad \mathbf{C}$
$\mathbf{f}_{\mathrm{int}}=\int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d} \Omega$
$\mathbf{K} \leftarrow \int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{C B} \mathrm{d} \Omega$
stress update

## Storage of history vars

History variables
FE mesh

$\alpha_{0}$ : history vars at previous converged load step n : number of integration points of the mesh

## Isotropic damage model

$$
\begin{aligned}
\boldsymbol{\sigma} & =(1-\omega) \mathbf{D} \boldsymbol{\epsilon} \\
\kappa & =\max \epsilon_{\mathrm{eq}} \\
\omega & =f(\kappa) \\
\epsilon_{\mathrm{eq}} & =g(\boldsymbol{\epsilon})
\end{aligned}
$$

$$
\dot{\boldsymbol{\sigma}}=(1-\omega) \mathbf{D} \dot{\boldsymbol{\epsilon}}-\mathbf{D} \boldsymbol{\epsilon} \dot{\omega}
$$

$$
\dot{\boldsymbol{\sigma}}=(1-\omega) \mathbf{D} \dot{\boldsymbol{\epsilon}}-\mathbf{D} \boldsymbol{\epsilon} \frac{\partial f}{\partial \epsilon_{\mathrm{eq}}} \frac{\partial \epsilon_{\mathrm{eq}}}{\partial \boldsymbol{\epsilon}} \dot{\boldsymbol{\epsilon}}
$$

$$
\dot{\boldsymbol{\sigma}}=\left[(1-\omega) \mathbf{D}-\mathbf{D} \boldsymbol{\epsilon} \frac{\partial f}{\partial \epsilon_{\mathrm{eq}}} \frac{\partial \epsilon_{\mathrm{eq}}}{\partial \boldsymbol{\epsilon}}\right] \dot{\boldsymbol{\epsilon}} \quad \mathbf{C}
$$

$$
\begin{aligned}
& \omega=1-\frac{\kappa}{\kappa_{I}}\left[1-\alpha+\alpha \exp ^{-\beta\left(\kappa-\kappa_{I}\right)}\right], \quad \kappa \geq \kappa_{I} \\
& \epsilon_{\mathrm{eq}}=\sqrt{\left\langle\epsilon_{1}\right\rangle^{2}+\left\langle\epsilon_{2}\right\rangle^{2}+\left\langle\epsilon_{3}\right\rangle^{2}} \\
& \langle x\rangle=0.5(x+|x|) \\
& \frac{\partial \epsilon_{\mathrm{eq}}}{\partial \epsilon_{i j}}=\frac{1}{\epsilon_{\mathrm{eq}}}\left(\left\langle\epsilon_{1}\right\rangle \frac{\partial \epsilon_{1}}{\partial \epsilon_{i j}}+\left\langle\epsilon_{2}\right\rangle \frac{\partial \epsilon_{2}}{\partial \epsilon_{i j}}+\left\langle\epsilon_{3}\right\rangle \frac{\partial \epsilon_{3}}{\partial \epsilon_{i j}}\right) \\
& \left\langle\epsilon_{k}\right\rangle \frac{\partial\left\langle\epsilon_{k}\right\rangle}{\partial \epsilon_{i j}}= \begin{cases}\epsilon_{k} \frac{\partial \epsilon_{k}}{\partial \epsilon_{i j}} & \text { if } \epsilon_{k}>0 \\
0 & \text { if } \epsilon_{k} \leq 0\end{cases} \\
& I_{1}=\epsilon_{x x}+\epsilon_{y y}+\epsilon_{z z} \\
& \epsilon^{3}-I_{1} \epsilon^{2}+I_{2} \epsilon-I_{3}=0 \quad I_{2}=\epsilon_{x x} \epsilon_{y y}+\epsilon_{y y} \epsilon_{z z}+\epsilon_{z z} \epsilon_{x x}-\epsilon_{x y}^{2}-\epsilon_{y z}^{2}-\epsilon_{z x}^{2} \\
& I_{3}=\epsilon_{x x} \epsilon_{y y} \epsilon_{z z}+2 \epsilon_{x y} \epsilon_{y z} \epsilon_{z x}-\epsilon_{x x} \epsilon_{y z}^{2}-\epsilon_{y y} \epsilon_{z x}^{2}-\epsilon_{z z} \epsilon_{x y}^{2} \\
& \frac{\partial \epsilon_{k}}{\partial \epsilon_{i j}}=\frac{\partial \epsilon_{k}}{\partial I_{1}} \frac{\partial I_{1}}{\partial \epsilon_{i j}}+\frac{\partial \epsilon_{k}}{\partial I_{2}} \frac{\partial I_{1}}{\partial \epsilon_{i j}}+\frac{\partial \epsilon_{k}}{\partial I_{3}} \frac{\partial I_{1}}{\partial \epsilon_{i j}}
\end{aligned}
$$

# Isotropic damage: stress update <br> ```def getStress( self, kinematics ):``` 

```
kappa = self.getHistoryParameter('kappa')
eps , detadstrain = self.getEquivStrain( kinematics.strain )
if eps > kappa:
    progDam = True
    kappa = eps
else:
    progDam = False
self.setHistoryParameter( 'kappa', kappa )
omega , domegadkappa = self.getDamage( kappa )
effStress = dot( self.De , kinematics.strain )
stress = ( 1. - omega ) * effStress
tang = ( 1. - omega ) * self.De
if progDam:
    tang += -domegadkappa * outer( effStress , detadstrain )
return stress , tang
```


## One-dimensional elasto-plasticity

def getStress( self, deformation ):

```
\# retrieve history variables
epsp0 = self.getHistoryParamete('plasticStr')
alpha0 \(=\) self.getHistoryParameter('hardening')
sigmaTrial \(=\) self.E * (deformation.strain - epsp0)
yieldFunc \(=a b s(\) sigmaTrial ) - (self.sigmaY + self.K * alpha0 )
if yieldFunc <= 0.:
    sigma \(=\) sigmaTrial
    tang \(=\) self.E
    epsp = epsp0
    alpha = alpha0
else:
```

```
    deltaGamma = yieldFunc / ( self.E + self. K )
```

    deltaGamma = yieldFunc / ( self.E + self. K )
    sigma = ( 1. - deltaGamma * self.E / abs (sigmaTrial) ) * sigmaTrial
    sigma = ( 1. - deltaGamma * self.E / abs (sigmaTrial) ) * sigmaTrial
    epsp = epsp0 + deltaGamma * sign ( sigmaTrial )
    epsp = epsp0 + deltaGamma * sign ( sigmaTrial )
    alpha = alpha0 + deltaGamma
    alpha = alpha0 + deltaGamma
    tang = self.E * self.K / ( self.E + self.K )
    tang = self.E * self.K / ( self.E + self.K )
    self.setHistoryParameter( 'plasticStr', epsp )
self.setHistoryParameter( 'hardening', alpha )
return sigma, tang

```

\section*{Convergence rate}

It has been mathematically proved, full NR converges quadratically closed to the solution.

\section*{Convergence rate}

It has been mathematically proved, full NR converges quadratically closed to the solution.

In reality ...

\section*{Convergence rate}

\title{
It has been mathematically proved, full NR converges quadratically closed to the solution.
}

\section*{In reality ...}
```

moduleisextraModules.solver.nonLin' : residual scale factor = 3.9758e+01
module `extraModules.solver.nonLin' : iter = 1, scaled residual = 8.9753e-02 module 'extraModules.solver.nonLin' : iter = 2, scaled residual = 1.9729e-02 module(extraModules.solver.nonLin' : iter = 3, scaled residual = 6.0983e-04 module-`extraModules.solver.nonLin'-:-iter==-4,-scaled residual = 6.3835e-08
The-Newton-Raphson-solver-converged-in-4 iterations

```

\section*{Convergence rate}

\title{
It has been mathematically proved, full NR converges quadratically closed to the solution.
}

\section*{In reality ...}
```

moduleisextraModules.solver.nonLin' : residual scale factor = 3.9758e+01
module `extraModules.solver.nonLin' : iter = 1, scaled residual = 8.9753e-02 module 'extraModules.solver.nonLin' : iter = 2, scaled residual = 1.9729e-02 module(extraModules.solver.nonLin' : iter = 3, scaled residual = 6.098.3e-04 module-`extraModules.solver.nonLin'-:-iter==-4,-scaled residual = 6.3835e-08
The-Newton-Raphson-solver-converged-in-4 iterations

```

\section*{Convergence rate}

\section*{It has been mathematically proved, full NR converges quadratically closed to the solution.}

\section*{In reality ...}
```

moduleisextraModules.solver.nonLin' : residual scale factor = 3.9758e+01
module `extraModules.solver.nonLin' : iter = 1, scaled residual = 8.9753e-02 module 'extraModules.solver.nonLin' : iter = 2, scaled residual = 1.9729e-02 module(extraModules.solver.nonLin' : iter = 3, scaled residual = 6.098.3e-04 module-`extraModules.solver.nonLin'-:-iter==-4,-scaled residual = 6.3835e-08
The-Newton-Raphson-solver-converged-in-4 iterations

```

\section*{Convergence criteria}

\section*{Residual}
\[
\frac{\|\mathbf{r}\|}{\left\|\mathbf{f}_{\mathrm{ext}}\right\|} \leq \epsilon
\]

Energy
\[
\frac{\mathbf{f}_{\mathrm{int}}^{\mathrm{T}} \delta \mathbf{a}}{\mathbf{f}_{\mathrm{int}, 1}^{\mathrm{T}} \delta \mathbf{a}_{1}} \leq \epsilon
\]

Displacement \(\quad \frac{\|\delta \mathbf{a}\|}{\max \left\|\delta \mathbf{a}_{i}\right\|} \leq \epsilon\)
relative norms
\[
\|\mathbf{a}\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
\]
tolerance is problem dependent

\section*{Modified NR methods}


Initial stiffness method


Modified Newton-Raphson more iterations per step without consistent material tangent

\section*{Direct displacement control}
\[
\begin{gathered}
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{0} \\
a_{5}=\lambda \bar{a}, \lambda=0,1,2, \ldots
\end{gathered}
\]

For each load step:
First iteration:
\[
\mathbf{K} \delta \mathbf{a}_{(1)}=-\mathbf{f}_{\mathrm{int}}
\]
\[
\delta a_{5}=\bar{a}
\]

From second iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(i)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =0
\end{aligned}
\]

Argyris (1965)
Batoz, Dhatt (1979)


\section*{Direct displacement control}
\[
\begin{gathered}
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{0} \\
a_{5}=\lambda \bar{a}, \lambda=0,1,2, \ldots
\end{gathered}
\]

For each load step:
First iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(1)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =\bar{a}
\end{aligned}
\]

Argyris (1965)
Batoz, Dhatt (1979)
\(\mathrm{f}_{\mathrm{ext}} \uparrow\) softening materials


From second iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(i)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =0
\end{aligned}
\]


\section*{Direct displacement control}
\[
\begin{gathered}
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{0} \\
a_{5}=\lambda \bar{a}, \lambda=0,1,2, \ldots
\end{gathered}
\]

For each load step:
First iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(1)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =\bar{a}
\end{aligned}
\]

Argyris (1965)
Batoz, Dhatt (1979)
\(\mathrm{f}_{\mathrm{ext}} \uparrow\) softening materials


From second iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(i)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =0
\end{aligned}
\]


\section*{Direct displacement control}
\[
\begin{gathered}
\mathbf{f}_{\mathrm{int}}(\mathbf{a})=\mathbf{0} \\
a_{5}=\lambda \bar{a}, \lambda=0,1,2, \ldots
\end{gathered}
\]

For each load step:
First iteration:
\[
\mathbf{K} \delta \mathbf{a}_{(1)}=-\mathbf{f}_{\mathrm{int}}
\]
\[
\delta a_{5}=\bar{a}
\]

From second iteration:
\[
\begin{aligned}
\mathbf{K} \delta \mathbf{a}_{(i)} & =-\mathbf{f}_{\mathrm{int}} \\
\delta a_{5} & =0
\end{aligned}
\]

Argyris (1965)
Batoz, What (1979)
\(\mathrm{f}_{\mathrm{ext}} \uparrow\) softening materials
\[
\begin{aligned}
& \text { (: } \\
& a_{5}=\lambda \bar{a}, \quad \lambda=0,1,2, \ldots
\end{aligned}
\]

\section*{Divergence issues}


\section*{the system is failed structurally or numerically???}

\section*{Elasto-plastic models}

\section*{Linear visoelasticity}```

