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Introduction
There exists problems in which the 
crack path is known in advance...

inter-granular cracking in 
polycrystals

delaminated 
composites



Introduction (cont.)

• easy to implement (2D, 3D)

• available in major FE packages: ABAQUS, LS-DYNA

...then the use of interface elements is recommended

Alternatives: 
XFEM/GFEM



Cohesive crack model

separation

Constitutive equations

deformation

Governing equations 
(strong form)



Cohesive crack model
Weak form

new term 

(skipped for static problems)

where



Discrete equations
upper face

lower face

Solid elements

Discrete equation

N1 = 0.5(1� ⇠)

N2 = 0.5(1 + ⇠)



Discrete equations (cont.)
assembled

f ext = f int + f coh

Static problems

Linearization (Newton-Raphson)
transformation matrix





Common interface elements

2D

3D

Solid elements Q4/T3 Q8/T6

H8



Numerical integration
It has been observed numerically that integrating the 
internal force and stiffness matrix of interface elements 
using the standard Gauss rule led to oscillatory response 
[de Borst, IJNME, 1993].

Newton-Cotes integration scheme 
for interface elements



Cohesive laws
Mode I Bilinear cohesive law (traction-separation law)
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• How to generate interface element meshes?

• Solution control  
 
 - load control:  
 - displacement control  
 - path following control  
   (arc-length methods)

Implementation aspects

F

u

cannot pass the snap-through

NO

cannot pass the snap-back



Mesh generation

• read a Gmsh mesh file

• double nodes along a path defined by the user

• modify the solid elements involved and

• generate interface elements

A C++ code was written to



Some application examples



Path following method

Newton-Raphson

f ext = �g

where

uI = K�1r, uII = K�1g

arc-length/constraint function�(u,�)

correction

Riks 1972 load factor�

reference load vector



Energy control
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Arc-length function

forward Euler

predefined amount of energy 
to be released [Nm]

G > 0



Assumption: secant unloading!!!

�E

straight line



imagine what if 
there are 2 cracks???

Indirect displacement 
control [de Borst 1986]

SEN beam

Indirect displacement control

local quantity!!!�(||uA � uB || ,�l)



Energy control

- fast to evaluate
- global quantity

Advantages of  
energy control

SEN beam

multiple cracks
FP van der Mer

EFM, 2008



Solution procedure

load
control

energy control

FP van der Mer
EFM, 2008



f int + f coh



Numerical examples

• Simple tests (to debug code)

• Material interface debonding

• Multi-delamination of a composite DCB

• Delamination of the DCB



Simple test (2D)

plane strain



Simple test (3D)

• As previous 2D example
• Thickness: 50
• Solved with Hex8 and Tet4



Debonding of a 
material interface

continuum: T3 elements
interface: linear 4-node

Cohesive law: Xu-Needleman



Multi-delamination



Multi-delamination



Matrix kinking

interface elements everywhere 
except for the hard inclusion

“Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in 

computational fracture mechanics”, VP Nguyen, Engineering Fracture Mechanics, 2014.



Discontinuous Galerkin and 
cohesive interface elements

k

k: sufficiently large not to reduce the compliance of solid



Probability Density Function (PDF) 

Stresses smaller than sigma_m, no failure: P=0

(two-parameter version)

Weibull distribution

(three-param. version)

Account for the fact that larger samples more prone 
to failure



Weibull distribution: implementation

where rand is a random number between 0 and 1.



where rand is a random number between 0 and 1.

0 500 1000 15000

0.005

0.01

0.015

0.02

σf [MPa]

PD
F 

[−
]

 

 

m=5
m=15
m=40

  double xrand;
  double value, f2t;

  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_real_distribution<> dis(0, 1);

  int ipCount   = 2;
  int elemCount = count / ipCount;

  for ( int i = 0; i < elemCount; i++ )
  {
    xrand = dis(gen);
    value  = pow(-log(xrand),1/m_) ;
    f2t     = f2t_ * value + sigmaMin_;
    f2ts_.pushBack ( f2t, ipCount );
  }

Weibull distribution: implementation

each IE has the same strength



Things to explore
• New cohesive laws

• New (better) interface element formulations 
(current element technology does not allow 
industrial applications to be realized.)

• Mesh topology such that mesh bias can be avoided.


