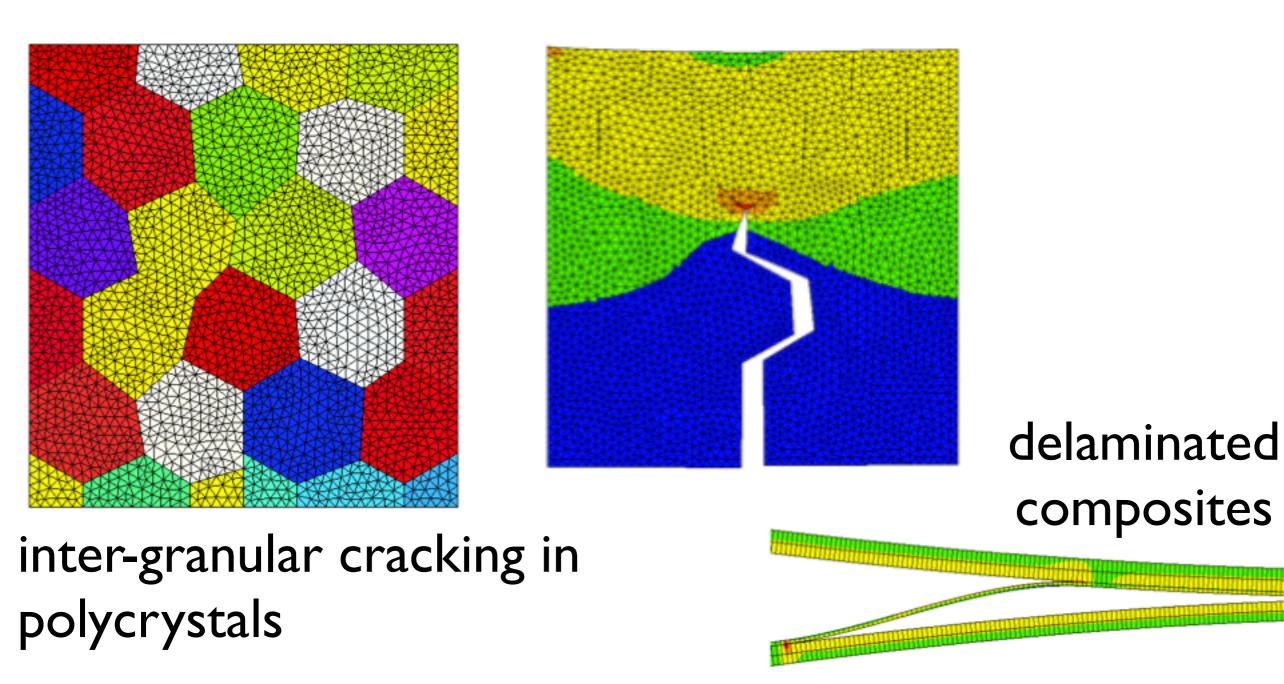
Crack modelling using zero-thickness interface elements

Nguyen Vinh Phu

The University of Adelaide

Introduction

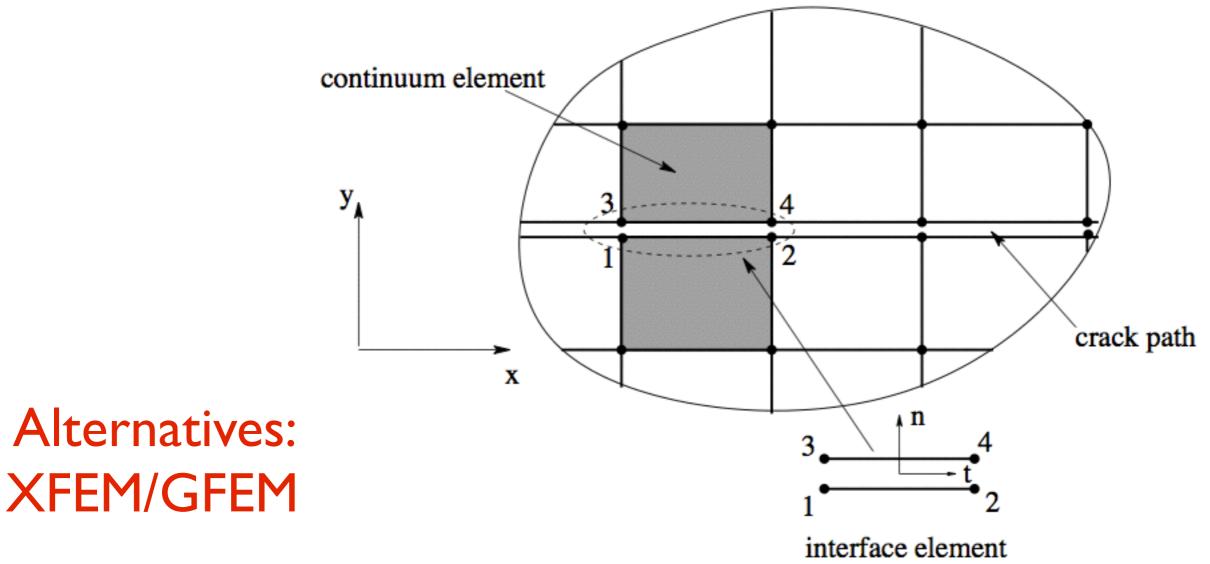
There exists problems in which the crack path is known in advance...



Introduction (cont.)

...then the use of interface elements is recommended

- easy to implement (2D, 3D)
- available in major FE packages: ABAQUS, LS-DYNA



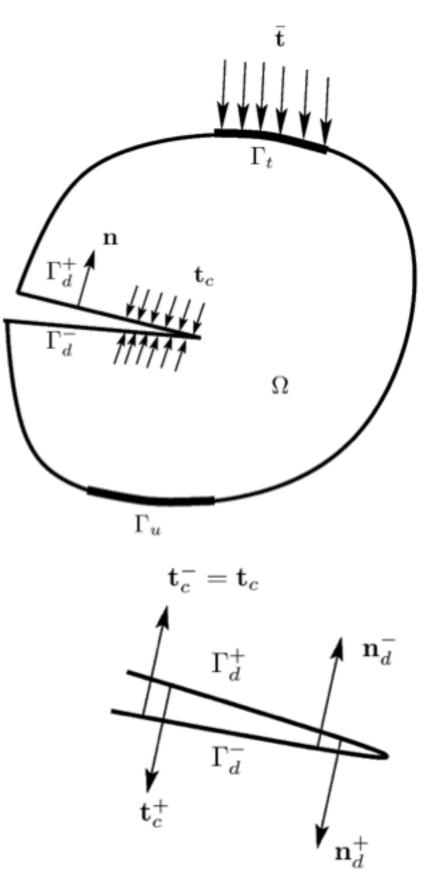
Cohesive crack model

Governing equations (strong form)

$$\begin{aligned} \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{b} - \rho \ddot{\mathbf{u}} &= \mathbf{0} \quad \mathbf{x} \in \Omega \\ \mathbf{n} \cdot \boldsymbol{\sigma} &= \mathbf{\bar{t}} \quad \mathbf{x} \in \Gamma_t \\ \mathbf{u} &= \mathbf{\bar{u}} \quad \mathbf{x} \in \Gamma_u \\ \mathbf{n}_d^+ \cdot \boldsymbol{\sigma} &= \mathbf{t}_c^+; \quad \mathbf{n}_d^- \cdot \boldsymbol{\sigma} &= \mathbf{t}_c^-; \quad \mathbf{t}_c^+ = -\mathbf{t}_c = -\mathbf{t}_c^- \quad \mathbf{x} \in \Gamma_d \end{aligned}$$

Constitutive equations

 $\dot{\sigma} = \mathbf{D}\dot{\epsilon} \longrightarrow \text{deformation}$ $\dot{\mathbf{t}}^{c} = \mathbf{T}[\![\dot{\mathbf{u}}]\!] \longrightarrow \text{separation}$



Cohesive crack model

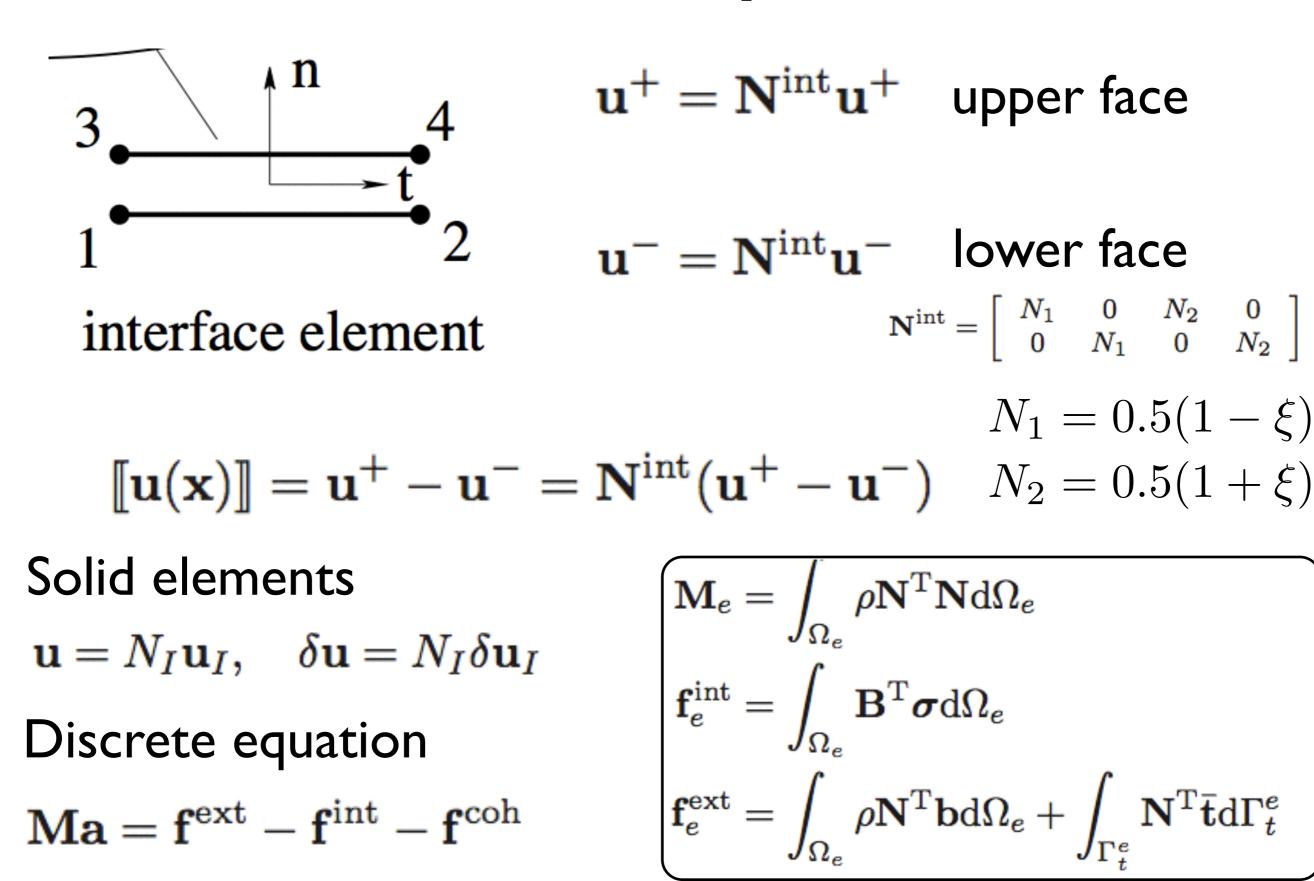
Weak form

$$\delta W^{\rm kin} = \delta W^{\rm ext} - \delta W^{\rm int} - \delta W^{\rm coh}$$
 new term

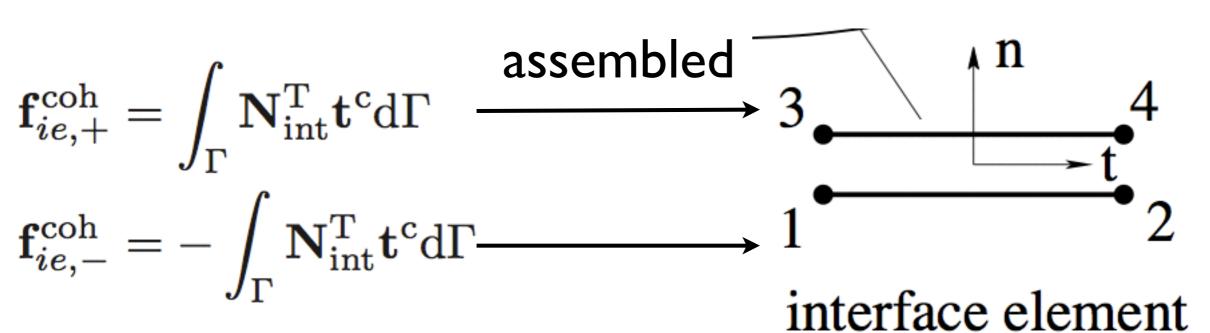
where

$$\delta W^{\rm kin} = \int_{\Omega} \delta \mathbf{u} \cdot \rho \ddot{\mathbf{u}} d\Omega \quad \text{(skipped for static problems)}$$
$$\delta W^{\rm int} = \int_{\Omega} \nabla^s \delta \mathbf{u} : \boldsymbol{\sigma} d\Omega$$
$$\delta W^{\rm ext} = \int_{\Omega} \delta \mathbf{u} \cdot \rho \mathbf{b} d\Omega + \int_{\Gamma_t} \delta \mathbf{u} \cdot \mathbf{\bar{t}} d\Gamma_t$$
$$\delta W^{\rm coh} = \int_{\Gamma_d} \delta \llbracket \mathbf{u} \rrbracket \cdot \mathbf{t}^{\rm c} d\Gamma_d$$

Discrete equations

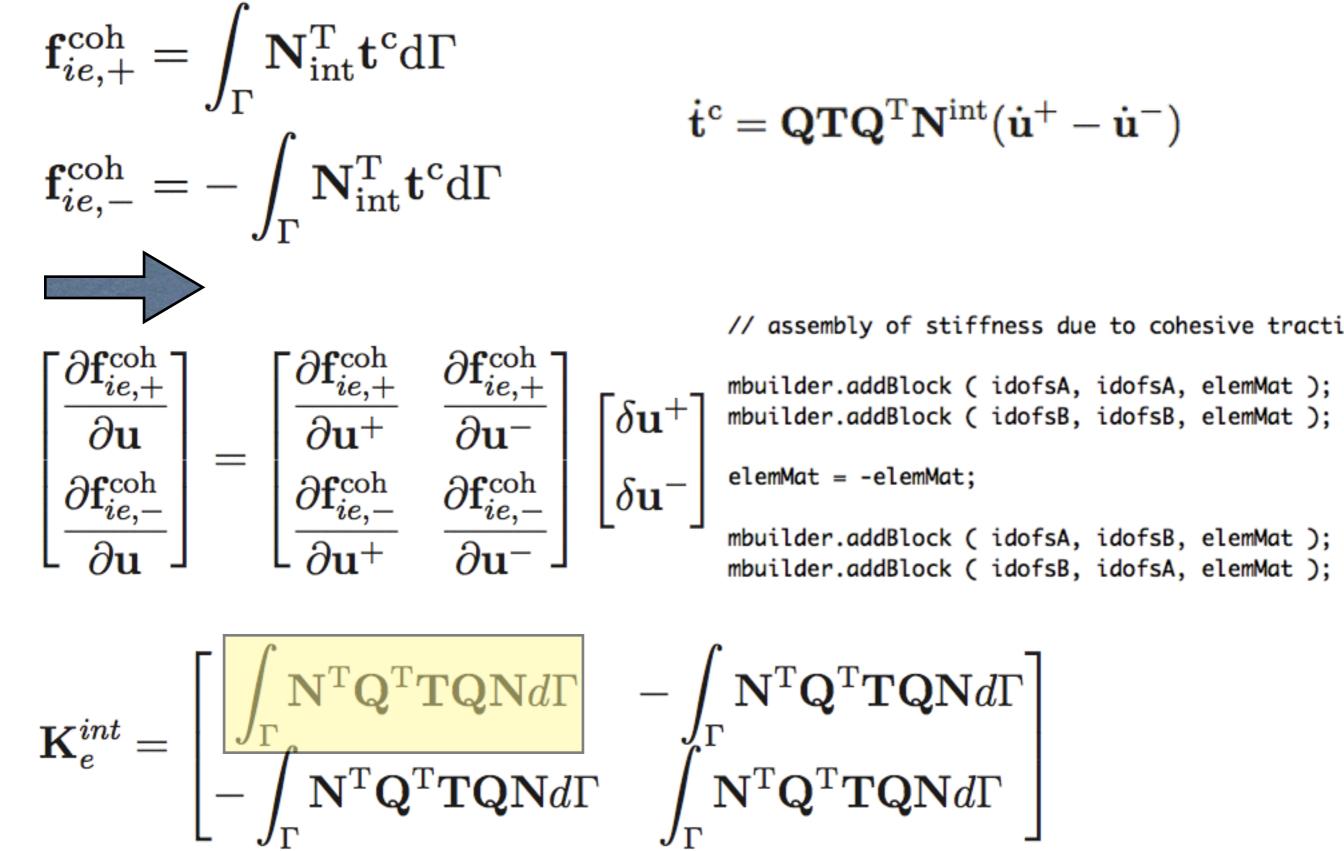


Discrete equations (cont.)



Static problems

$$\begin{split} \mathbf{f}^{\mathrm{ext}} &= \mathbf{f}^{\mathrm{int}} + \left(\mathbf{f}^{\mathrm{coh}} \right) \\ \text{Linearization (Newton-Raphson)} \\ \mathbf{\dot{t}}^{\mathrm{c}} &= \mathbf{T} \llbracket \dot{\mathbf{u}} \rrbracket \end{split}$$



 $\dot{\mathbf{t}}^{c} = \mathbf{Q}\mathbf{T}\mathbf{Q}^{\mathrm{T}}\mathbf{N}^{\mathrm{int}}(\dot{\mathbf{u}}^{+} - \dot{\mathbf{u}}^{-})$

// assembly of stiffness due to cohesive traction

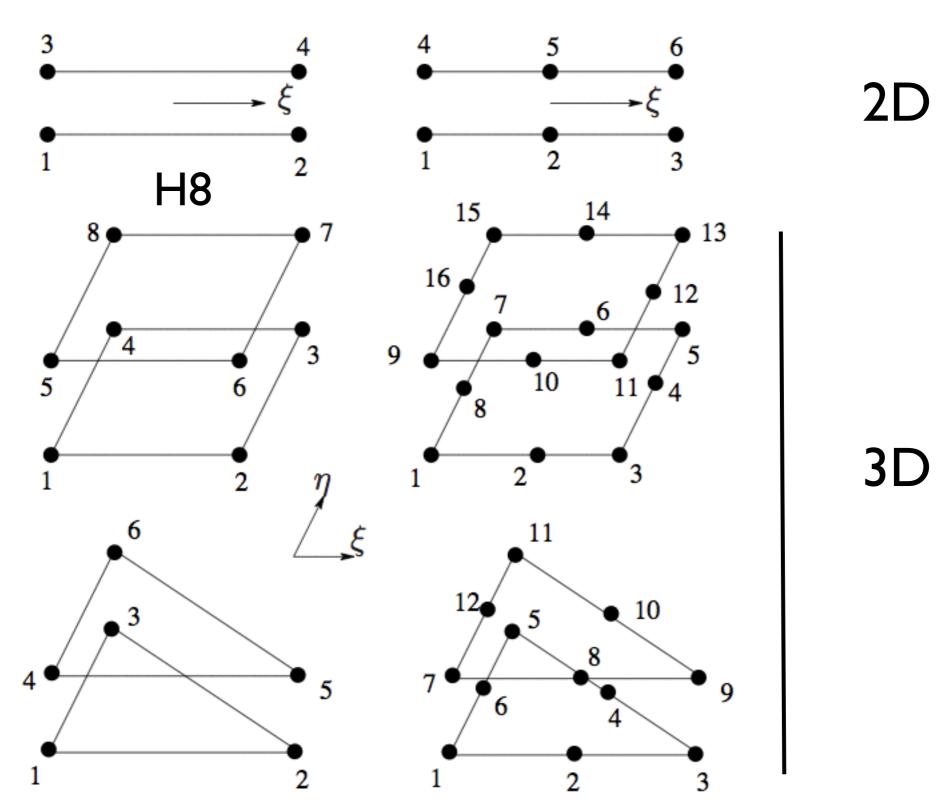
mbuilder.addBlock (idofsB, idofsA, elemMat);

Common interface elements

Solid elements

Q4/T3

Q8/T6



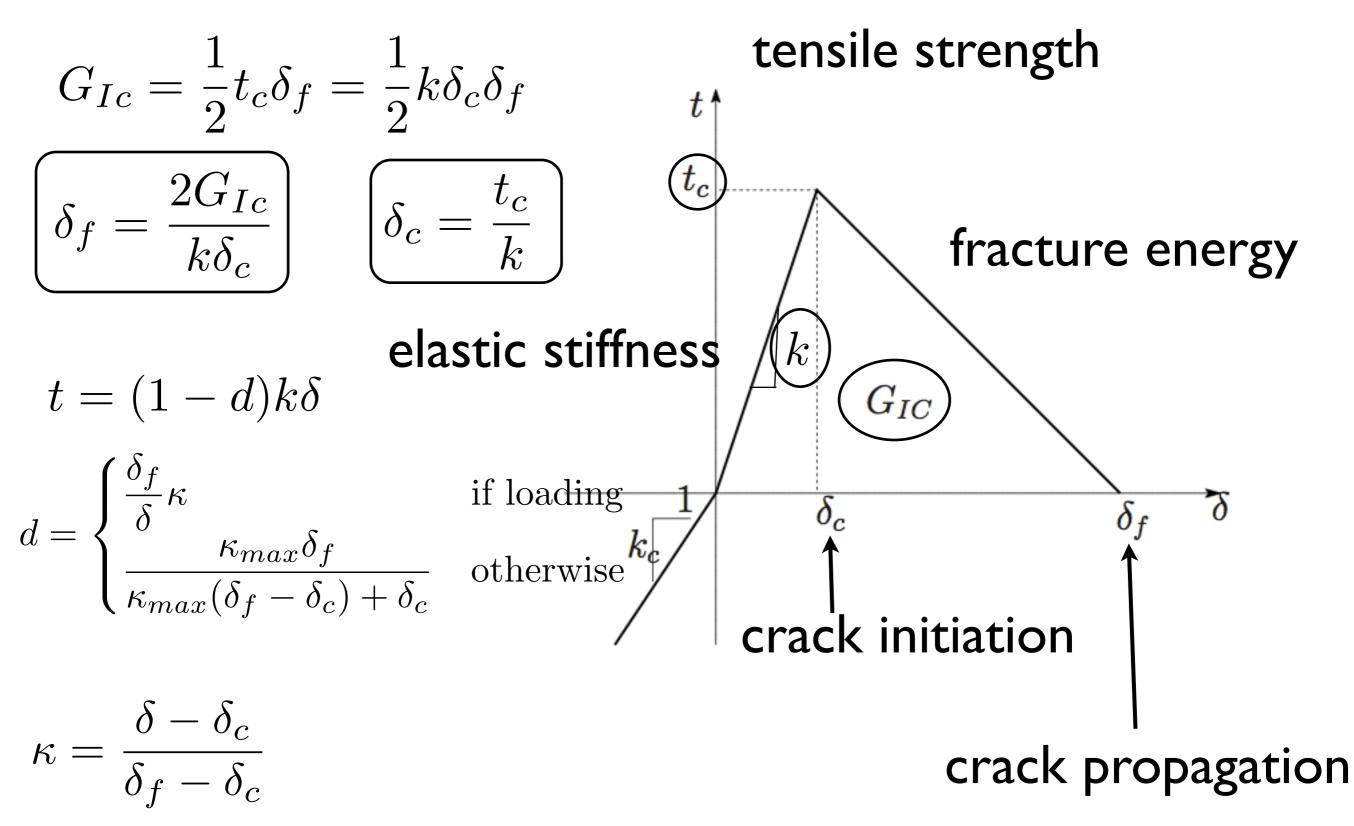
Numerical integration

It has been observed numerically that integrating the internal force and stiffness matrix of interface elements using the standard Gauss rule led to oscillatory response [de Borst, IJNME, 1993].

Newton-Cotes integration scheme for interface elements

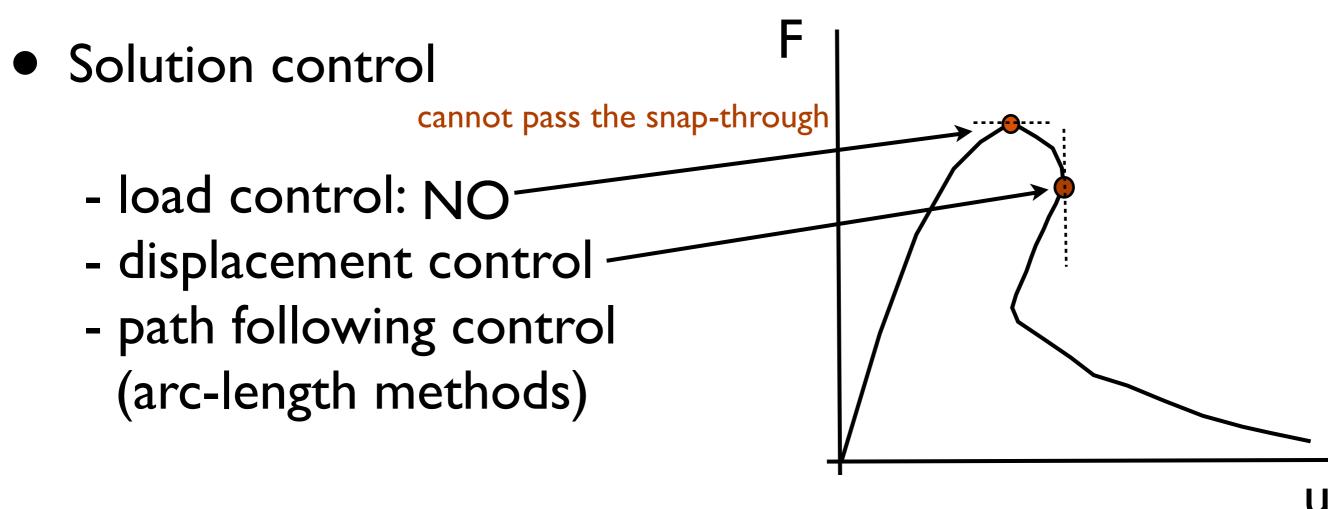
Cohesive laws

Mode I Bilinear cohesive law (traction-separation law)



Implementation aspects

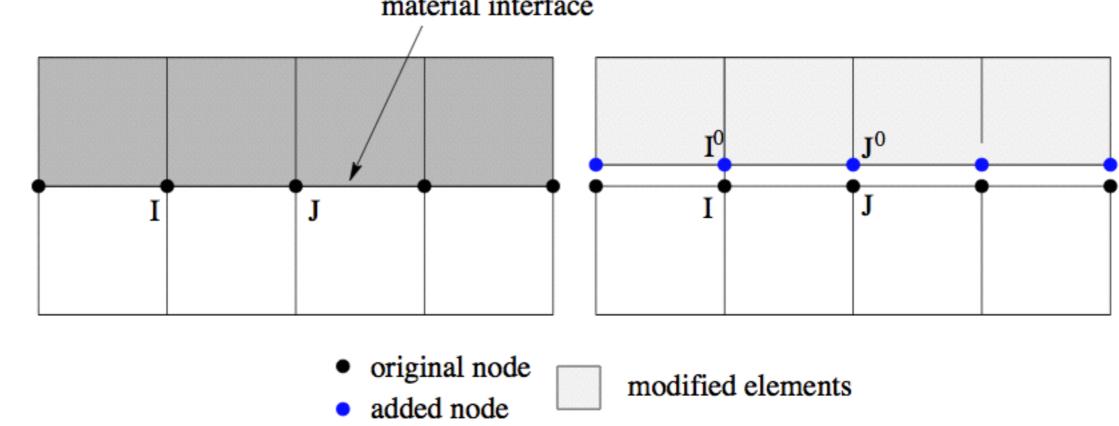
• How to generate interface element meshes?



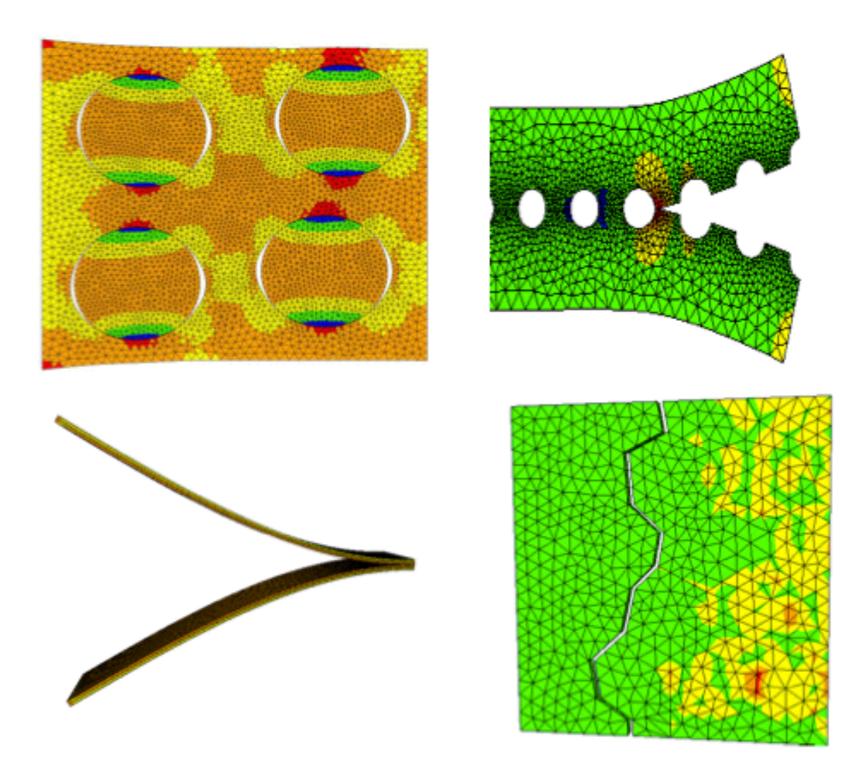
Mesh generation

A C++ code was written to

- read a Gmsh mesh file
- double nodes along a path defined by the user
- modify the solid elements involved and
- generate interface elements material interface



Some application examples



Path following methodRiks 1972 λ load factor $\begin{bmatrix} \mathbf{f}^{int}(\mathbf{u}) - \lambda \mathbf{g} \\ \phi(\mathbf{u}, \lambda) \end{bmatrix} = 0$ $\mathbf{f}^{ext} = \lambda \mathbf{g}$, reference load vector

Newton-Raphson $\phi(\mathbf{u}, \lambda)$ arc-length/constraint function

$$\begin{bmatrix} \mathbf{f}^{\text{int}}(\mathbf{u}_{(k)}) - \lambda_{(k)}\mathbf{g} \\ \phi(\mathbf{u}_{(k)}, \lambda_{(k)}) \end{bmatrix} + \begin{bmatrix} \mathbf{K} & -\mathbf{g} \\ \mathbf{v}^{\text{T}} & w \end{bmatrix}^{(k)} \cdot \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \lambda \end{bmatrix} = 0$$

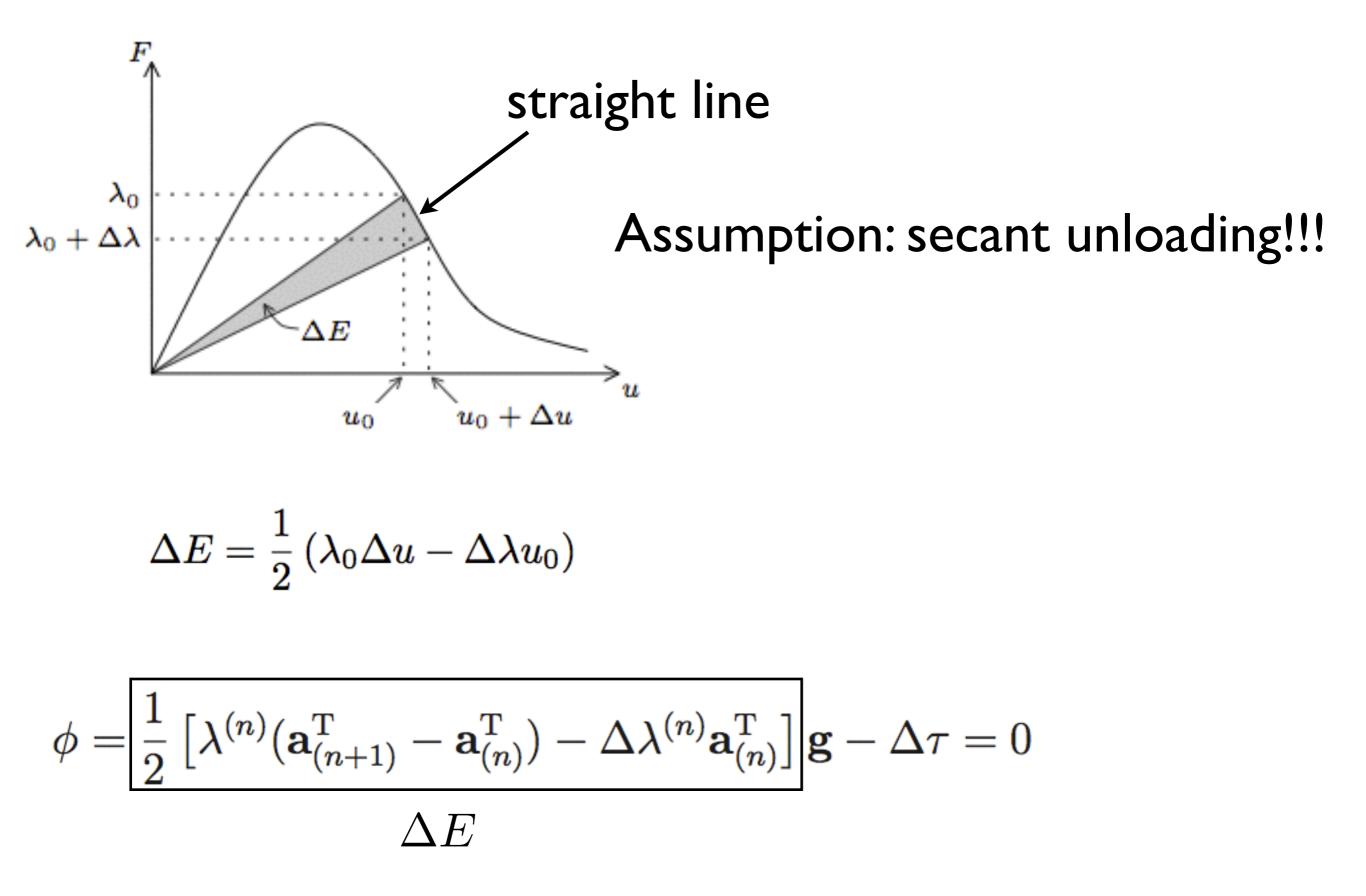
where

$$\mathbf{K} = rac{\partial \mathbf{f}^{\text{int}}}{\partial \mathbf{u}}, \quad \mathbf{v} = rac{\partial \phi}{\partial \mathbf{u}}, \quad w = rac{\partial \phi}{\partial \lambda}$$

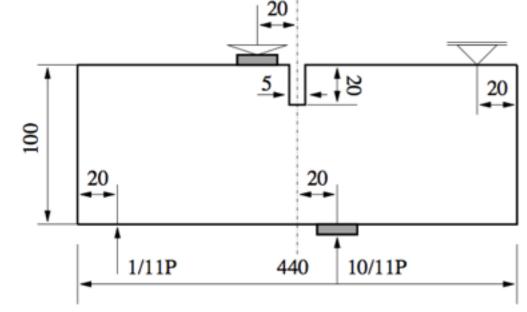
$$\longrightarrow \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{u}_I \\ 0 \end{bmatrix} - \frac{\mathbf{v}^{\mathrm{T}} \mathbf{u}_I + \phi}{\mathbf{v}^{\mathrm{T}} \mathbf{u}_{II} + w} \begin{bmatrix} \mathbf{u}_{II} \\ 1 \end{bmatrix}$$

$$\mathbf{u}_I = \mathbf{K}^{-1} \mathbf{r}, \quad \mathbf{u}_{II} = \mathbf{K}^{-1} \mathbf{g}$$

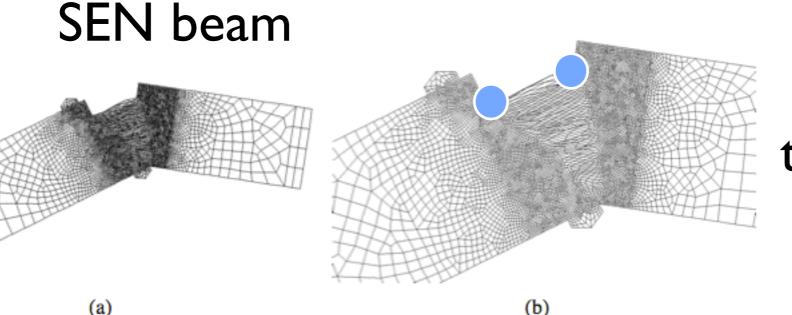
$$\text{correction} \begin{bmatrix} \mathbf{u} \\ \lambda \end{bmatrix}^{(k+1)} = \begin{bmatrix} \mathbf{u} \\ \lambda \end{bmatrix}^{(k)} + \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \lambda \end{bmatrix}$$



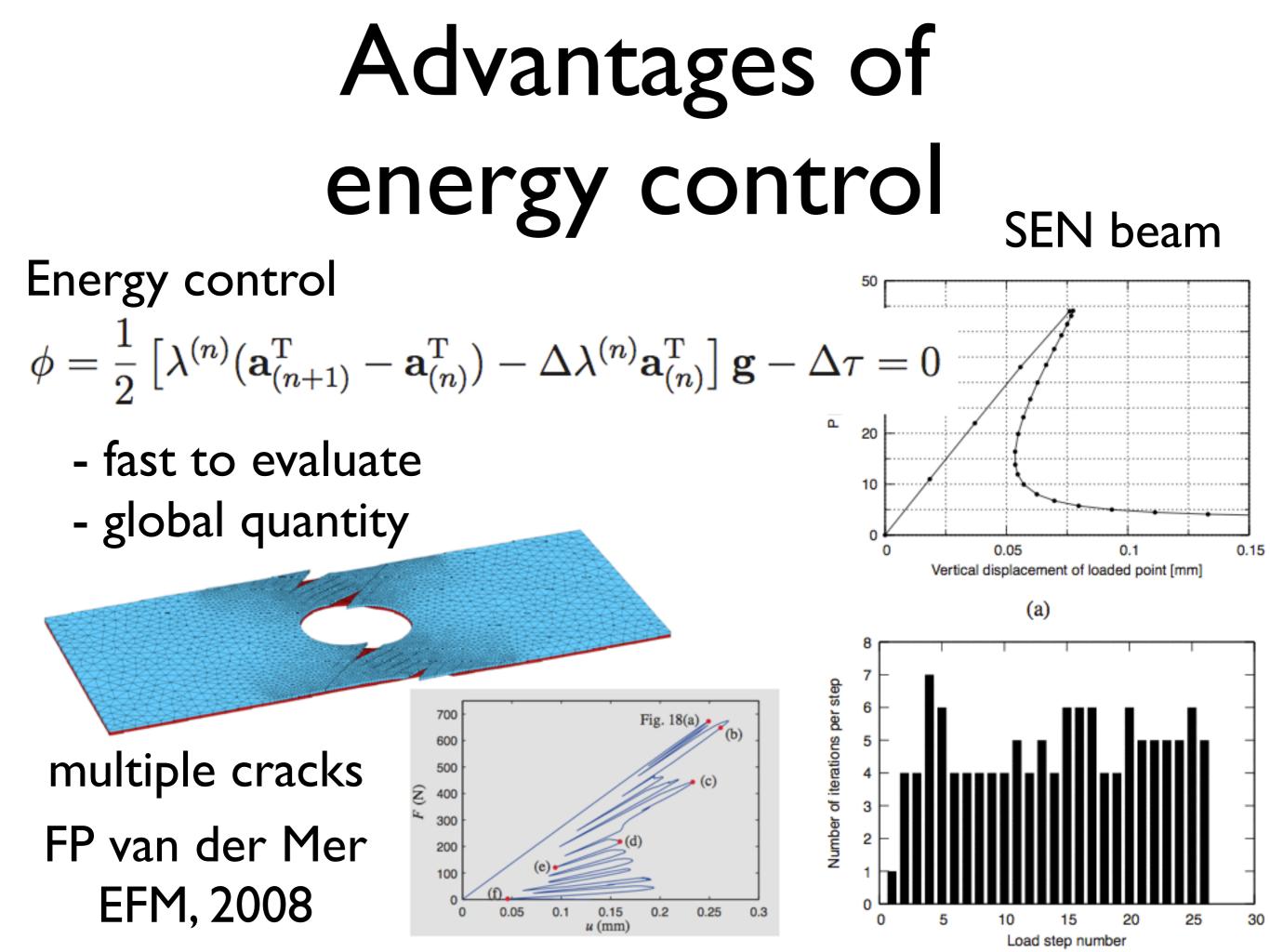
Indirect displacement control [de Borst 1986]



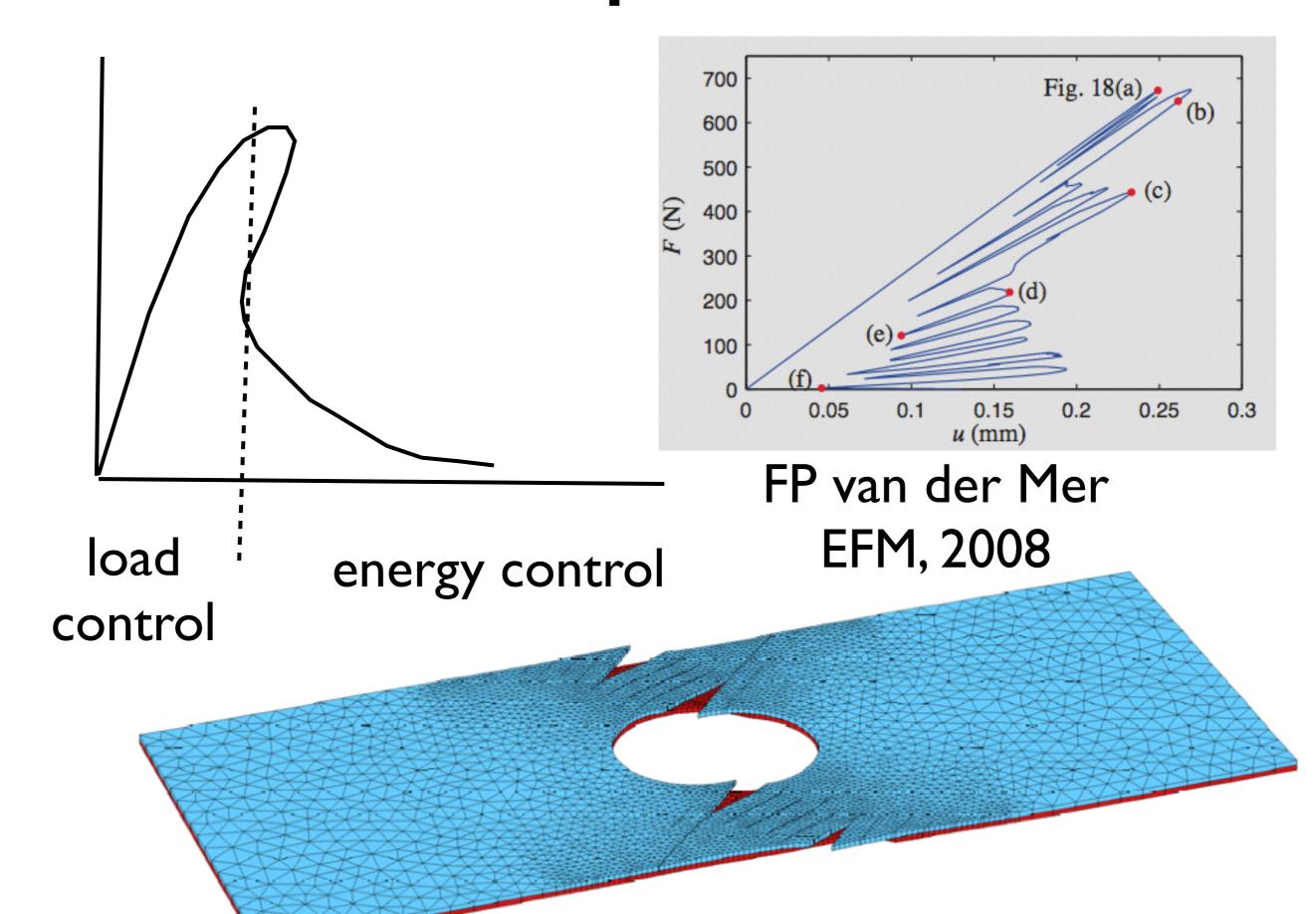
Indirect displacement control $\phi(||u_A - u_B||, \Delta l)$ local quantity!!!



imagine what if there are 2 cracks???



Solution procedure



Box 4 Flowchart for solution procedure with energy-based control

- 1. Initialization: $\lambda = 0$, set n_d , $\Delta \tau_0$, $\Delta \tau_{\min}$, $\Delta \tau_{\max}$
- 2. Solve the elastic branch using load control
 - i. Solving the equilibrium $\mathbf{f}^{\text{int}} = \lambda \mathbf{g}$ using Newton-Raphson method
 - ii. Store the load scale: $\lambda_0 = \lambda$
 - iii. Check number of iterations: $n > n_d$. If no, $\lambda = \lambda + \Delta \tau_0$, goto 2i. Else
 - iv. Compute the released energy $G = 0.5 \left[\lambda_0 (\mathbf{u}^{\mathrm{T}} \mathbf{u}_0^{\mathrm{T}}) \Delta \tau_0 \mathbf{u}_0^{\mathrm{T}}\right] \mathbf{g}$
 - v. $\Delta \tau = G$
 - vi. $\Delta \tau_{\min} \leq \Delta \tau \leq \Delta \tau_{\max}$
- 3. Switch to arc-length control
 - i. Update ${\bf K}$, ${\bf f}$ from element contributions using a FE formulation
 - ii. Update $\mathbf{v},\,\omega,\,\phi$

$$\begin{aligned} \mathbf{v} &= 0.5\lambda_0 \mathbf{g} \\ \boldsymbol{\omega} &= -0.5\mathbf{u}_0^{\mathrm{T}}\mathbf{g} \\ \boldsymbol{\phi} &= 0.5\left[\lambda_0(\mathbf{u}^{\mathrm{T}}-\mathbf{u}_0^{\mathrm{T}}) - \Delta\lambda\mathbf{u}_0^{\mathrm{T}}\right]\mathbf{g} - \Delta \mathbf{v} \end{aligned}$$

iii. Start the iteration procedure

$$\mathbf{r} \leftarrow \lambda \mathbf{g} - \mathbf{f}$$

$$\mathbf{u}_{I} \leftarrow \mathbf{K}^{-1} \mathbf{r}$$

$$\mathbf{u}_{II} \leftarrow \mathbf{K}^{-1} \mathbf{g}$$

$$\alpha \leftarrow \frac{\mathbf{v}^{\mathrm{T}} \mathbf{u}_{I} + \phi}{\mathbf{v}^{\mathrm{T}} \mathbf{u}_{II} + w}$$

$$\mathbf{u} \leftarrow \mathbf{u} + \mathbf{u}_{I} - \alpha \mathbf{u}_{II}$$

$$\lambda \leftarrow \lambda - \alpha$$

iv. Check convergence, if not return to step 3i

v. Adjust the path following parameter $\Delta \tau = \Delta \tau * 0.5^{\gamma}$, $\gamma = \frac{n_j - n_d}{4} * *$

- vi. $\Delta \tau_{\min} \leq \Delta \tau \leq \Delta \tau_{\max}$
- vii. Store the load scale: $\lambda_0 = \lambda$

* In the above the subscript 0 denotes converged values of previous load step.

** This is a kind of automatic incrementation which calculate the complete behavior in as few steps as possible. n_d is a user-defined number of desired iterations per step.

 $\mathbf{f}^{\mathrm{int}} + \mathbf{f}^{\mathrm{coh}}$

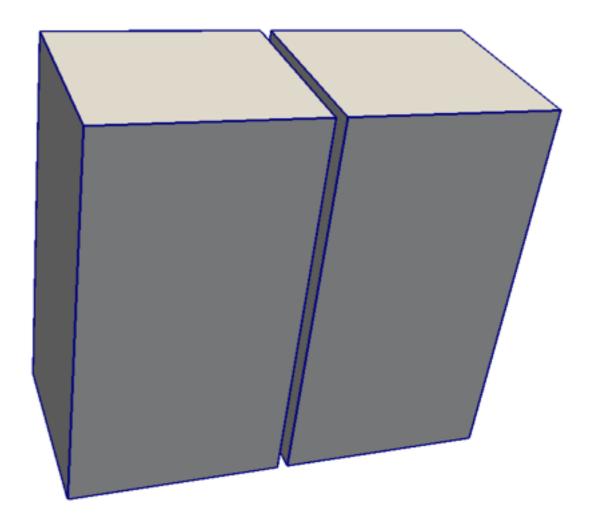
Numerical examples

- Simple tests (to debug code)
- Material interface debonding
- Multi-delamination of a composite DCB
- Delamination of the DCB

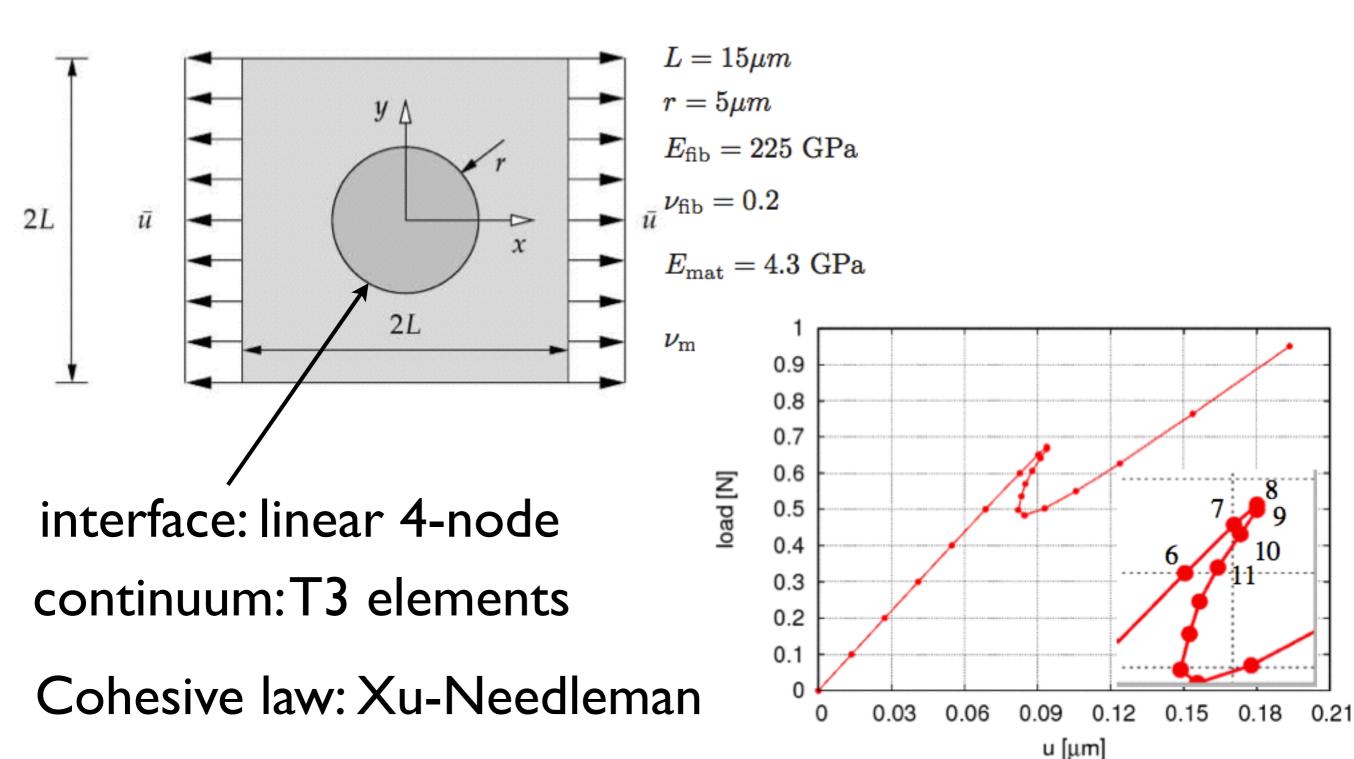


Simple test (3D)

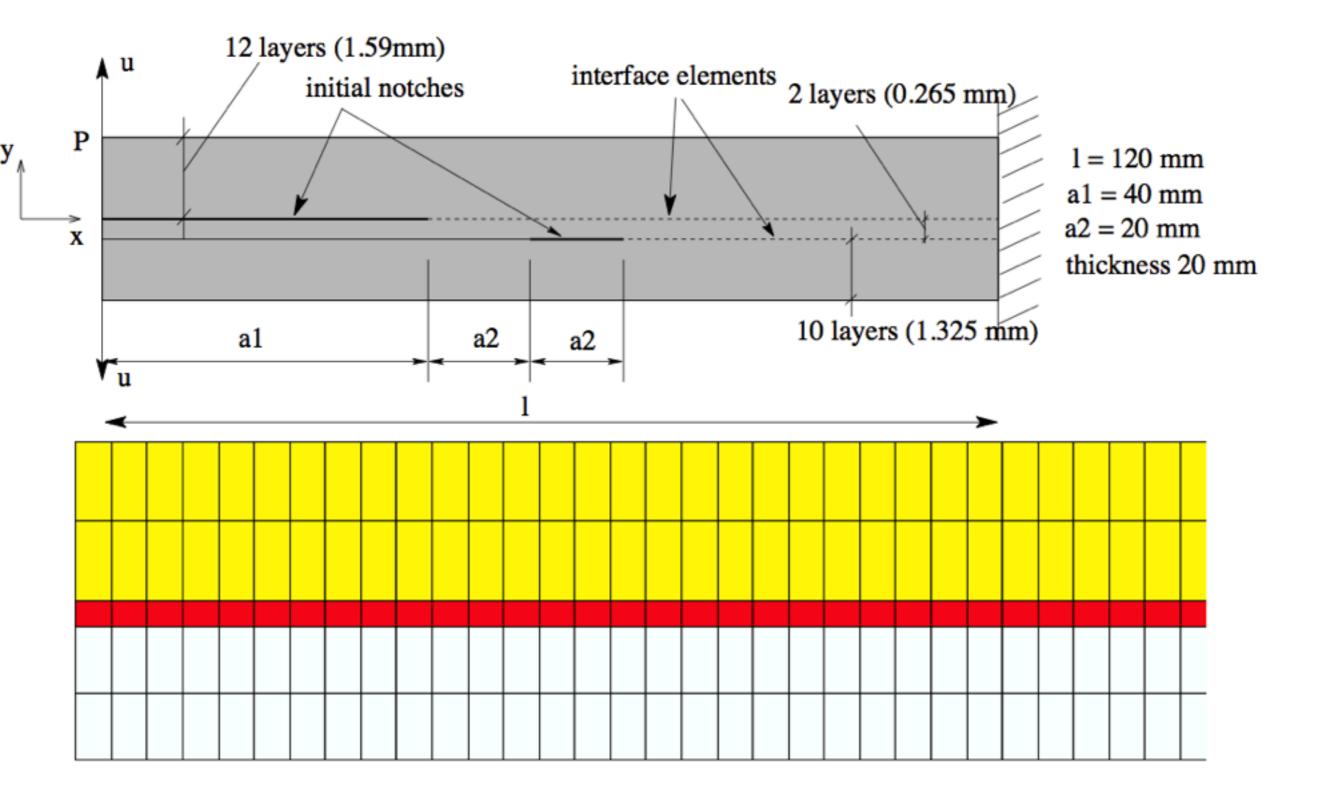
- As previous 2D example
- Thickness: 50
- Solved with Hex8 and Tet4



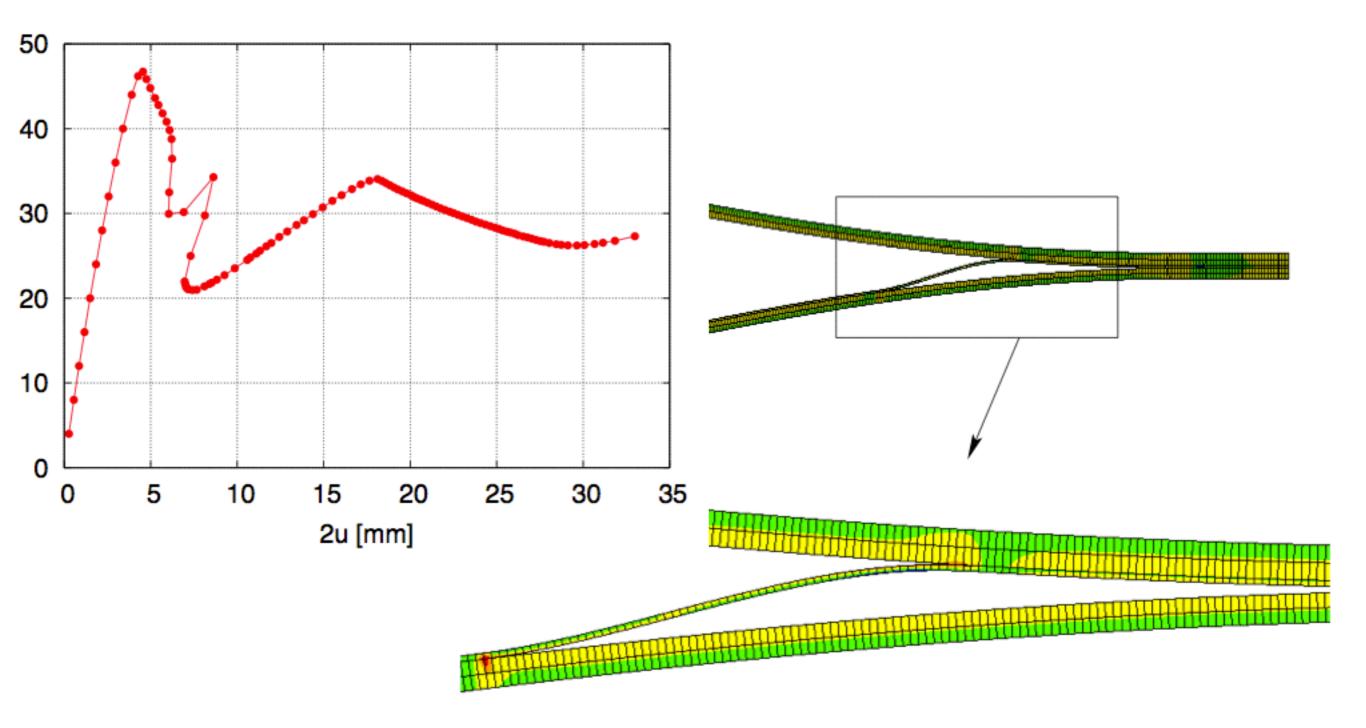
Debonding of a material interface



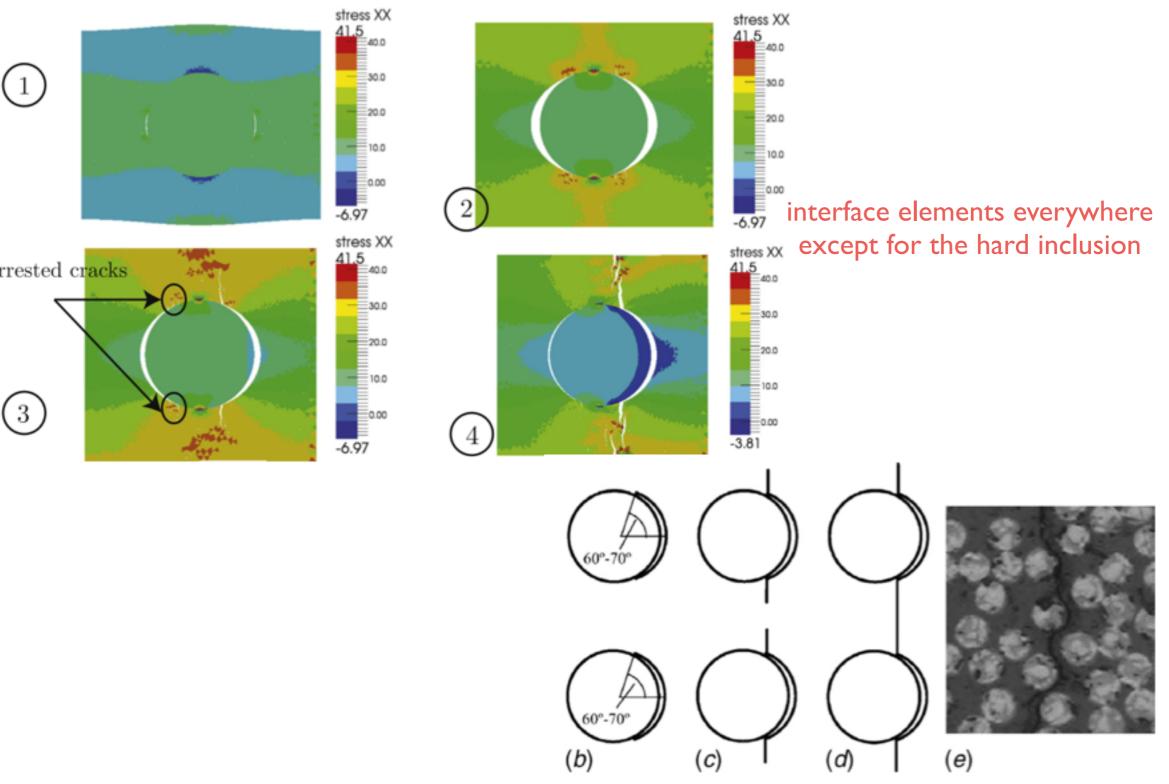
Multi-delamination



Multi-delamination

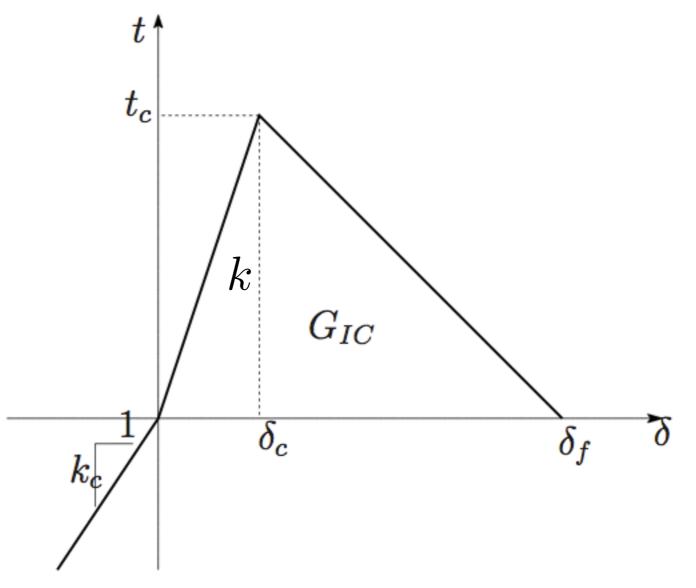


Matrix kinking



"Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational fracture mechanics", VP Nguyen, Engineering Fracture Mechanics, 2014.

Discontinuous Galerkin and cohesive interface elements



k: sufficiently large not to reduce the compliance of solid

Weibull distribution

$$P(\sigma_{f}) = 1 - \exp\left[-\left(\frac{\sigma_{f}}{\sigma_{0}}\right)^{m}\right] \quad \text{(two-parameter version)}$$
$$P(\sigma_{f}) = 1 - \exp\left[-\left(\frac{\sigma_{f} - \sigma_{m}}{\sigma_{0}}\right)^{m}\right] \quad \text{(three-param. version)}$$

Stresses smaller than sigma_m, no failure: P=0

Probability Density Function (PDF)

$$f(\sigma_f) \equiv \frac{dP}{d\sigma_f} = \frac{m}{\sigma_0} \left(\frac{\sigma_f}{\sigma_0}\right)^{m-1} \exp\left[-\left(\frac{\sigma_f}{\sigma_0}\right)^m\right]$$

Account for the fact that larger samples more prone to failure $\left[\left(V \right) \left(\sigma_{x} \right)^{m} \right]$

$$P(\sigma_f) = 1 - \exp\left[-\left(\frac{v}{V_0}\right)\left(\frac{\sigma_f}{\sigma_0}\right)\right]$$

Weibull distribution: implementation

$$P(\sigma_f) = 1 - \exp\left[-\left(\frac{\sigma_f - \sigma_m}{\sigma_0}\right)^m\right]$$

$$\exp\left[-\left(\frac{\sigma_f - \sigma_m}{\sigma_0}\right)^m\right] = 1 - P(\sigma_f) \equiv P_s(\sigma_f)$$

$$-\left(\frac{\sigma_f - \sigma_m}{\sigma_0}\right)^m = -\log\left[P_s(\sigma_f)\right]$$

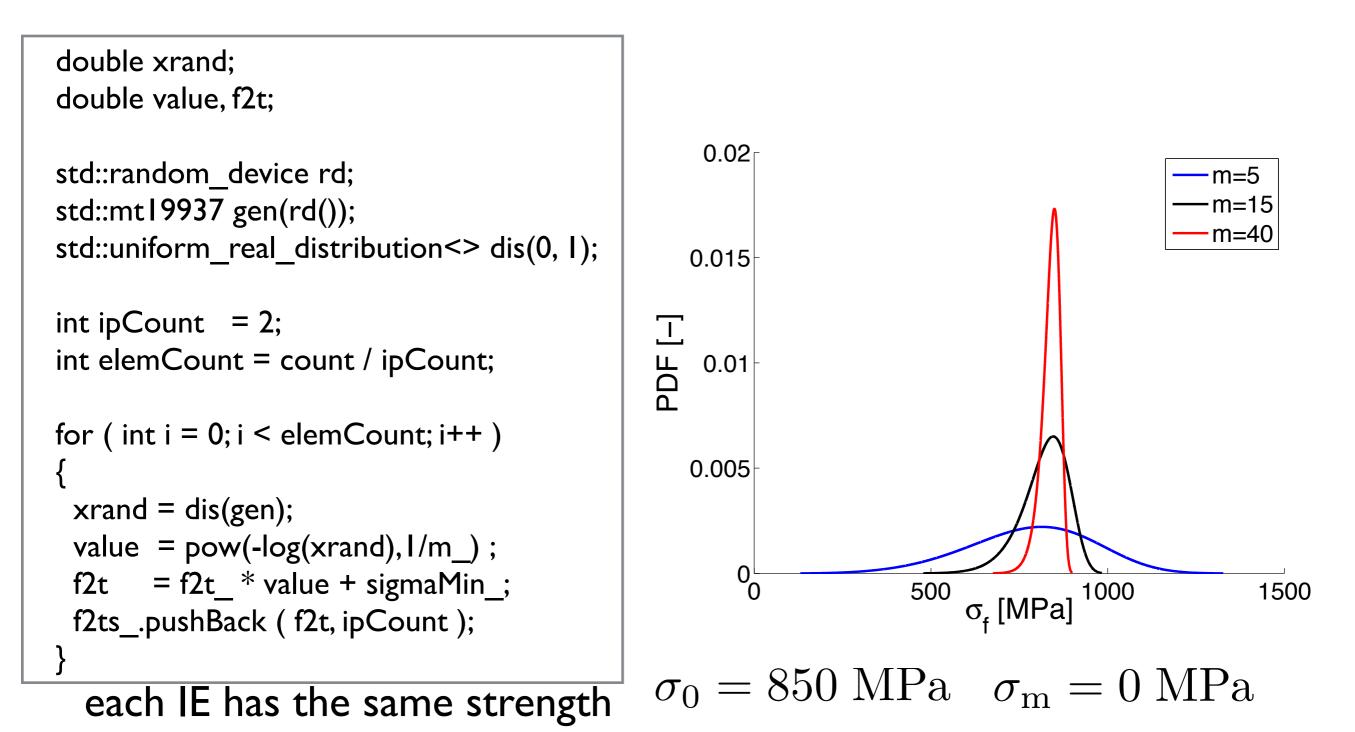
$$\sigma_f = \sigma_0 \left(-\log(rand)\right)^{1/m} + \sigma_m$$

where *rand* is a random number between 0 and 1.

Weibull distribution: implementation

$$\sigma_f = \sigma_0 \left(-\log(rand)\right)^{1/m} + \sigma_m$$

where rand is a random number between 0 and 1.



Things to explore

- New cohesive laws
- New (better) interface element formulations (current element technology does not allow industrial applications to be realized.)
- Mesh topology such that <u>mesh bias</u> can be avoided.

