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Outline
• Computational models for fracture 

- Continuum mechanics: LEFM, Cohesive zone models 
- Peridynamics 
- Continuous/discontinuous description of failure 
  (Damage models, XFEM, interface elements)

• Multiscale modeling of fracture 
- Hierarchical, semi-concurrent and concurrent methods 
- Computational homogenization models for fracture

• Image-based modeling 
- Conforming mesh methods 
- Level Set/XFEM, Finite Cell Method (non-conforming)  
- Voxel based methods 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Continuum mechanics theories

Fracture Mechanics
Damage Mechanics

+

spatial derivatives of displacements: 
do not exist at discontinuities (cracks)

Cauchy, Euler, Lagrange… 

�ij,j + ⇢bi = ⇢üi

PDE

H
x

x

0

No spatial derivatives of displacements

Peridynamics
S. Silling 2000

Peridynamics is a formulation of continuum mechanics 
that is oriented toward deformations with discontinuities,
especially fractures. Integral equation

3

✏ij =
1

2
(ui,j + uj,i)

�ij = Cijkl✏kl



Continuous/discontinuous 
description of fracture

Fracture MechanicsDamage Mechanics

LEFM, EPFM, CZMIsotropic damage models
Softening plasticity models
Damage-plastic models 4

strong discontinuityweak discontinuity



Fracture mechanics models

Linear Elastic Fracture 
Mechanics (LEFM):
- brittle materials
- ductile materials under   
   Small Scale Yielding (SSY) condition
- an existing crack is required

Elastic Plastic Fracture Mechanics 
(EPFM):
- ductile materials   
- an existing crack is required

crack tip

R ⌧ D
Cohesive Zone Models (CZMs):
- quasi-brittle materials (concrete)
- ductile materials
- no existing crack is needed
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Linear Elastic Fracture 
Mechanics (LEFM)

Barsoum element [1970s]

Remeshing is a key point.

1p
r

da

dN
= C(�K)m

Very useful for fatigue life 
estimation

�ij =
Kp
2⇡r

fij(✓) + H.O.T

SIF
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crack tip
crack edge

double nodes

crack must locate on element edges



Cohesive Zone Models 
(CZMs)
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separation

Constitutive equations

deformation

�

t

ft

GIc

0

ft tensile strength

GIc fracture energy

[Extrinsic] Cohesive law
[Initially rigid] TSL
(Traction Separation Law)

�max

1

� ft

crack initiation

Barrenblatt 1962 
Dugdale 1960 
Hilleborg, 1976

crack direction 
criterion



Cohesive crack model

separation

Constitutive equations

deformation

Governing equations 
(strong form)
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Cohesive crack model
Weak form

new term 

where
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different techniques



Crack discretization techniques

Zero-thickness interface elements, 1968 PUM FEM, 1999

Meshless/Meshfree methods,
1994

Embedded strong discontinuity, 1987



Interface elements
composite delamination

(+) easy to implement 2D/3D
(+) available in ABAQUS, LD-DYNA 

intrinsic 
cohesive law

u+,u� [[u]] � ⌧
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- preprocessing: GMSH
- solver: jem/jive (C++)



Interface elements
inter-granular fracture of polycrystalline material
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failure of a fiber reinforced composite



Interface elements with discontinuous Galerkin
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Partition of Unity Methods

u

h(x) =
X

I2S
NI(x)uI

X

J

NJ (x) = 1

X

J

NJ (x)�(x) = �(x)
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(PUM)

Melenk and 
Babuska 1996

+
X

J2Sc

NJ(x)�(x)aJ

Sum of shape functions is equal to one

ui =
K

2µ

r
r

2⇡
fij(✓)

Approximation of the displacement field

J

�

r ✓



Extended FEM (XFEM) 

+
X

K2St

NK(x)

 
4X

↵=1

B↵b
↵
K

!

u

h(x) =
X

I2S
NI(x)uI

+
X

J2Sc

NJ(x)H(x)aJ
for LEFM

[B↵] =

p
r sin

✓

2

,
p
r cos

✓

2

,
p
r sin

✓

2

sin ✓,
p
r cos

✓

2

sin ✓

�
H(x) =

⇢
+1 if (x� x

⇤
) · n � 0

�1 otherwise

Enrichment functions
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Belytschko et al., 1999

Sc

St

nothing but an instance of 
PUM for crack problems



Sub-triangulation for numerical integration

Homogeneous LEFM

Interfacial 
LEFM
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two cracks

Matlab code



XFEM for cohesive cracks

Sc

No good crack tip solution is known, no 
tip enrichment!!!

Wells, Sluys, 2001

not enriched to ensure zero 
crack tip opening!!!

17numerical integration

�̇ = D✏̇
ṫ = T ˙[[u]]

u

h(x) =
X

I2S
NI(x)uI +

X

J2Sc

NJ (x)H(x)aJ

H(x) =

⇢
+1 if (x� x

⇤
) · n � 0

�1 otherwise
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XFEM/Cohesive zones

Size effect



M. Duflot

F.P. van der Mer, TU Delft
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… convincing examples

Northwestern Univ.



XFEM for material interfaces

level set representation 

signed distance functionabs-enrichment function

u

h(x) =
X

I2S
NI(x)uI +

X

J2Sc

NJ(x) (x)aJ

 

 
,x

across interface, strain field is discontinuous

x
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xc

rc

Sukumar et al. 2002

�(x) = NI(x)�I

� = ||x� xc||� rc

�
min

�
max

< 0Sc



trabecular bone, PhD thesis, Tran, NUS

hole

holes=extremely soft inclusions
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Continuum damage mechanics

�A = �̄Ā

Hook’s law:

� =
Ā

A
�̄ = (1� !)�̄, ! = 1� Ā

A

�̄ = E"

� = (1� !)E"

nominal stress

effective stress�̄

A

Ā

�
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Kachanov, 1958, Rabotnov 1969, Hult 1979

damage variable

0  !  1

CDM is a constitutive theory that describes the progressive loss of 
material integrity due to the initiation, coalescence and propagation
of microcracks, microvoids etc. These changes in the microstructure lead
to the degradation of the material stiffness at the macroscale.

[M. Jirasek]

� = (1� !)E"

damage variable



Local damage model

� = (1� !)C✏

! = f(✏eq)

✏eq = g(✏)

Isotropic damage model

! =

8
><

>:

0 if  < i

1� i


c�
c�i

if i    c

1 if  > c

C : elasticity tensor
    : equivalent strain [-]✏eq

 = max ✏eq

Damage evolution law

Irreversibility of failure

�

✏
i c

linear softening

✏eq =

vuut
3X

i=1

h✏ii2Tensile failure
[Mazars]

(1� !)E

stress update: explicit and simple

E



Local damage model

No energy dissipation !!!

In the early 1980s it was found that FE solutions of softening 
damage do not converge upon mesh refinement, Z. Bazant, 1984.

Softening plastic models: also suffer from mesh sensitivity.

Isotropic damage model

� = (1� !)C✏

! = f(✏eq)

✏eq = g(✏)



Nonlocal damage model
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SEN beam

l is the length scale

0  !  1

Cabot and Bazant, 1987

l

� = (1� !)C✏

! = f(✏̄eq)

↵(r) = exp

✓
� r2

2l2

◆
✏̄eq(x) =

Z

⌦
↵(x� ⇠)✏eq(⇠)d⇠ nonlocal 

eqv. strain?



Gradient damage model
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nodal unknowns:  displacements 
and nonlocal equivalent strain

0  !  1

� = (1� !)C✏

! = f(✏̄eq)

↵(r) = exp

✓
� r2

2l2

◆
✏̄eq(x) =

Z

⌦
↵(x� ⇠)✏eq(⇠)d⇠

c =
l2

2

� = (1� !)C✏

! = f(✏̄eq)

✏̄eq � cr2✏̄eq = ✏eq

Peerlings et al., 1996

Implicit GD modelMicroplane 
Damage Models
(Z. Bazant)

�̇ = (1� !)C✏̇�C✏!̇

secant matrix



Continuous vs. discontinuous description
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+ easy to implement (2D/3D)
+ one single constitutive law
+ standard elements
-  incorrect final stage of failure
-  evolving length scale

-  hard to implement (3D)
- two separate constitutive laws
-  enriched elements
+ correct final stage of failure 

bests of both worlds: combined 
continuous-discontinuous approaches
(Dr. Nguyen Dinh Giang, Univ. Sydney) 



Solution strategies
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F

u

snap-through

snap-back

For a quasi-static analysis of softening solids, 
one encounters cases... F

u

?: divergence occurs

load control

F

u

disp control ?: divergence

uIncremental-iterative procedure



Path-following methods
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Newton-Raphson

f ext = �g

where

uI = K�1r, uII = K�1g

arc-length/constraint function�(u,�)

correction

Riks 1972 load factor�

reference load vector



Energy control
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V =
1

2

Z

⌦
✏T� =

1

2

Z

⌦
aTBT� =

1

2
aTf int =

1

2
�aTg

V̇ � �ȧTgEnergy release rate

Gutierrez 2004 equilibrium
f int =

Z

⌦
BT�✏ = Ba

Arc-length function

forward Euler

predefined amount of energy 
to be released [Nm]

G > 0



Energy based arc-length control
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F.P. van der Mer

EFM, 2008

… and here we are 

complex failure mechanism in composites

- matrix cracking
- delamination of plies

[±45o]



Peridynamics
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XFEM can do this as well but would 
require genius programmers (2D)

See phase field models for similar 
capacities

S. Silling 2000

crack branching

continuum version of MD (molecular dynamics)

Bobaru, 2010

glass

time integration: Verlet integration 



Multiscale methods
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multiple length scales

Multiscale models: - better constitutive models
- design new materials



Classification
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h�i = C : h✏i

hierarchical methods  semi-concurrent concurrent methods

After Ted Belytschko ARLEQUIN method

pile installation
Wriggers,2011



Arlequin method
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[H. Ben Dhia, 1998]

FEM-DEM

2D/1D FEM

3D/2D FEM

- partition of unity for energy in gluing zone

- Lagrange multipliers to glue two models

↵M + ↵m = 1

a multi-scale/multi-model method

Mortar Method



37 work in progress

FEMArlequin



Heterogeneous materials

38

macroscopic behavior depends on
- size, shape
- spatial distribution
- volume fraction
- mechanical properties
of the constituents.

macroscopically homogeneous but microscopically heterogeneous

� = f(✏,↵)phenomenological 
constitutive models

two many params
 the identification of these parameters is generally difficult



Direct Numerical 
Simulation (DNS)
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Unger, Eckard, 2011

44 cm

1 100 000 degrees of freedom

Due to the high numerical effort and memory demand of 
DNS, it is, in general, not possible to simulate the full 
structure on the micro-/meso-scale with the computational 
power available nowadays



Homogenization
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Homogenization = replace a heterogeneous material with an 
equivalent homogeneous material.

RVE=Representative Volume Element

separation of scales

Voigt, 1910

Reuss 1929

Hill 1965



Homogenization
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h�i = 1

|⌦m|

Z

⌦m

�md⌦

h✏i = 1

|⌦m|

Z

⌦m

✏md⌦

1 FEM

2

C effective properties

h�i = C : h✏i

bottom-up approach

RVE

+ simple, efficient
-  restricted to an assumed macro constitutive model
-  linear elasticity, hyperelasticity, simple plasticity

6 independent loads are needed to determine 36 constants



Artificial microstructures 
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F. Fritzen 2010

Statistically equivalent to real microstructures

Easy to discretized into finite elements

Build tailor made materials

Real microstructures: hard to obtain and not meshable



Computational Homogenization
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FE2 method 
[Renard, 1987, Smit 1998,

F. Feyel, 2000]

Micro problems are solved in parallel 

+ nonlinear, large deformation
- computationally expensive
- 2D problems at laboratory scale
- not always robust!!!

\sigma



Troubles with softening RVEs
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- RVE does not exist for softening materials
- CH cannot be applied for softening materials

meso-structure of concrete

strain localization



Failure zone averaging

45 Nguyen et al, 2010
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RVE does exist for softening materials by 
using the failure zone averaging technique



Discontinuous CH model
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 MACRO MICRO

Nguyen et al, 2011
discrete crack

localization 
band



Example
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DNS

RVECH



Dynamic discontinuous  
CH model
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Vo

- macro: implicit dynamics
- micro: quasi-static

A. Karamnejad, 
Nguyen, Sluys, 2012



More information
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Image-based modeling
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Traditional FE analysis
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Geometry 
(CAD)

Mesh FE solver
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There are many cases in which such CAD geometries 
are not available. However, image data are so ready: 
medicine, material sciences...

Simpleware

See also the FREE program OOF2, NIST, USA

(1) Industry



voxel based method

each voxel = one finite element

zig-zag boundary

- incorrect volume fraction
- images with high resolution are required
- too large problem size!!!

microstructure of cement paste

P.  Wriggers
54

(2) universities



Level set/XFEM
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Finite Cell Method (FCM) (Fictitious Domain Methods)



Tools

• Preprocessing: GMSH, GID, ANSYS, ABAQUS

• Solvers:  
- FEM:  FEAP, OOFEM, libMesh, KRATOS, Code Aster, 
TRILINOS, PERMIX, OpenSees (earthquake, structures)  
- DEM: LAMMPS, KRATOS, YADE…  
- CFD: OpenFoam, KRATOS…  
- PD:    LAMMPS

• Postprocessing: GMSH, PARAVIEW, MATLAB, TECPLOT
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Matlab is not enough. Consider Fortran, C++, Python.

Move to Ubuntu Linux to make your programming life much easier.

OpenMPI
ParMETIS

domain decomposition

trilinos.sandia.gov/



Prof. L.J. Sluys

Prof. S. Bordas

Dr. M. Stroeven

Dr. O. Lloberas Valls

A. Karamnejad Dr. E. Lingen

Habanera develops jem/jive C++ library



Thank you for  
your attention


